###
计算机系统应用英文版:2024,33(6):126-132
本文二维码信息
码上扫一扫!
基于无人机直播联动的养殖动物视觉识别系统
(四川农业大学 资源学院, 成都 611134)
Visual Recognition System for Farmed Animals Based on UAV Live Broadcast Linkage
(College of Resource, Sichuan Agricultural University, Chengdu 611134, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 284次   下载 670
Received:December 15, 2023    Revised:January 17, 2024
中文摘要: 对养殖动物的高效识别是畜牧养殖场开展各类精准养殖的基础, 需要建设相应识别系统做支撑. 本文所设计系统采用无人机直播联动方式进行样本采集和巡检识别, 既能将视频实时上传到数据中心, 又比无人机普通拍摄具有更少的小目标和遮挡问题发生, 在此基础上, 系统选用YOLOv7算法模型进行动物行为和数量的识别, 并对YOLOv7算法模型优化和轻量化, 以提升识别精度和降低系统负载, 最后将识别数据输出到标准接口供各类精准养殖程序便捷调用. 系统既适应养殖场的场景需求又兼顾系统的高效运行, 能为养殖场实施各类精准养殖提供统一数据支持, 降低重复设计成本和分散管理成本.
Abstract:The efficient recognition of farmed animals is the basis for animal husbandry farms to conduct all kinds of precision breeding. Therefore, it is essential to build a corresponding recognition system to support it. The system designed in this study uses the UAV live broadcast linkage method for sample collection and cruise recognition. This method allows real-time video uploading to the data center and addresses issues such as fewer small targets and occlusion problems compared to ordinary UAV shooting. On this basis, the study selects the YOLOv7 algorithm model to recognize animal behavior and quantity. Furthermore, it optimizes and lightweights the YOLOv7 algorithm model to enhance the recognition accuracy and reduce the system load. Finally, the recognition data is output to the standard interface for convenient calls by various precision breeding programs. The system not only adapts to the scene needs of the farm but also takes into account the efficient operation of the system. It can provide unified data support for implementing diverse precision breeding in the farm and reduce the cost of repeated design and decentralized management.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2021YFE0102000); 中国电信&四川农业大学智慧农业创新实验室揭榜挂帅项目; 国家级大学生创新训练计划(202310626023)
引用文本:
叶扬,徐精文,徐鹏飞.基于无人机直播联动的养殖动物视觉识别系统.计算机系统应用,2024,33(6):126-132
YE Yang,XU Jing-Wen,XU Peng-Fei.Visual Recognition System for Farmed Animals Based on UAV Live Broadcast Linkage.COMPUTER SYSTEMS APPLICATIONS,2024,33(6):126-132