###
计算机系统应用英文版:2024,33(6):143-152
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
局部与全局相融合的孪生低照度视频增强网络
(浙江理工大学 信息科学与工程学院, 杭州 310018)
Siamese Low-light Video Enhancement Network with Fusion of Local and Global Features
(School of Information Science and Engineering , Zhejiang Sci-Tech University, Hangzhou 310018, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 261次   下载 716
Received:December 27, 2023    Revised:January 29, 2024
中文摘要: 在低照度环境下拍摄到的视频往往有对比度低、噪点多、细节不清晰等问题, 严重影响后续的目标检测、分割等计算机视觉任务. 现有的低照度视频增强方法大都是基于卷积神经网络构建的, 由于卷积无法充分利用像素之间的长程依赖关系, 生成的视频往往会有部分区域细节丢失、颜色失真的问题. 针对上述问题, 提出了一种局部与全局相融合的孪生低照度视频增强网络模型, 通过基于可变形卷积的局部特征提取模块来获取视频帧的局部特征, 并且设计了一个轻量级自注意力模块来捕获视频帧的全局特征, 最后通过特征融合模块对提取到的局部特征和全局特征进行融合, 指导模型能生成颜色更真实、更具细节的增强视频. 实验结果表明, 本方法能有效提高低照度视频的亮度, 生成颜色和细节都更丰富的视频, 并且在峰值信噪比和结构相似性等评价指标中也都优于近几年提出的方法.
Abstract:Videos captured in low illumination environments often carry problems such as low contrast, high noise, and unclear details, which seriously affect computer vision tasks such as target detection and segmentation. Most of the existing low-light video enhancement methods are constructed based on convolutional neural networks. Since convolution cannot make full use of the long-range dependencies between pixels, the generated video often suffers from loss of details and color distortion in some regions. To address the above problems, this study proposes a Siamese low-light video enhancement network coupling local and global features. The model obtains local features of video frames through a deformable convolution-based local feature extraction module and designs a lightweight self-attention module to capture the global features of video frames. Finally, the extracted local and global features are fused by a feature fusion module, which guides the model to generate enhanced videos with more realistic colors and details. The experimental results show that the proposed method can effectively improve the brightness of low-light videos and generate videos with richer colors and details. It also outperforms the methods proposed in recent years in evaluation metrics such as peak signal-to-noise ratio and structural similarity.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
竺钰成,杨羊.局部与全局相融合的孪生低照度视频增强网络.计算机系统应用,2024,33(6):143-152
ZHU Yu-Cheng,YANG Yang.Siamese Low-light Video Enhancement Network with Fusion of Local and Global Features.COMPUTER SYSTEMS APPLICATIONS,2024,33(6):143-152