###
计算机系统应用英文版:2024,33(5):76-84
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
杂乱场景中多尺度注意力特征融合抓取检测网络
(1.武汉科技大学 计算机科学与技术学院, 武汉 430081;2.武汉科技大学 智能信息处理与实时工业系统湖北省重点实验室, 武汉 430081;3.武汉科技大学 机器人与智能系统研究院, 武汉 430081)
Grasping Detection Network of Multi-scale Attention Feature Fusion in Cluttered Scenes
(1.School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China;2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, China;3.Institute of Robotics and Intelligent Systems (IRIS), Wuhan University of Science and Technology, Wuhan 430081, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 278次   下载 974
Received:November 13, 2023    Revised:December 11, 2023
中文摘要: GSNet使用抓取度区分杂乱场景的可抓取区域, 显著地提高了杂乱场景中机器人抓取位姿检测准确性, 但是GSNet仅使用一个固定大小的圆柱体来确定抓取位姿参数, 而忽略了不同大小尺度的特征对抓取位姿估计的影响. 针对这一问题, 本文提出了一个多尺度圆柱体注意力特征融合模块(Ms-CAFF), 包含注意力融合模块和门控单元两个核心模块, 替代了GSNet中原始的特征提取方法, 使用注意力机制有效地融合4个不同大小圆柱体空间内部的几何特征, 从而增强了网络对不同尺度几何特征的感知能力. 在大规模杂乱场景抓取位姿检测数据集GraspNet-1Billion的实验结果表明, 在引入模块后将网络生成抓取位姿的精度最多提高了10.30%和6.65%. 同时本文将网络应用于实际实验, 验证了方法在真实场景当中的有效性.
Abstract:GSNet relies on graspness to distinguish graspable areas in cluttered scenes, which significantly improves the accuracy of robot grasping pose detection in cluttered scenes. However, GSNet only uses a fixed-size cylinder to determine the grasping pose parameters and ignores the influence of features of different sizes on grasping pose estimation. To address this problem, this study proposes a multi-scale cylinder attention feature fusion module (Ms-CAFF), which contains two core modules: the attention fusion module and the gating unit. It replaces the original feature extraction method in GSNet and uses an attention mechanism to effectively integrate the geometric features inside the four cylinders of different sizes, thereby enhancing the network’s ability to perceive geometric features at different scales. The experimental results on GraspNet-1Billion, a grabbing pose detection dataset for large-scale cluttered scenes, show that after the introduction of the modules, the accuracy of the network’s grasping poses is increased by up to 10.30% and 6.65%. At the same time, this study applies the network to actual experiments to verify the effectiveness of the method in real scenes.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2022YFB4700400); 国家自然科学基金(62073249)
引用文本:
徐衍,林云汉,闵华松.杂乱场景中多尺度注意力特征融合抓取检测网络.计算机系统应用,2024,33(5):76-84
XU Yan,LIN Yun-Han,MIN Hua-Song.Grasping Detection Network of Multi-scale Attention Feature Fusion in Cluttered Scenes.COMPUTER SYSTEMS APPLICATIONS,2024,33(5):76-84