###
计算机系统应用英文版:2024,33(5):57-66
本文二维码信息
码上扫一扫!
基于注意力机制的自监督图卷积会话推荐
(辽宁工程技术大学 软件学院, 葫芦岛 125105)
Self-supervised Graph Convolution Session Recommendation Based on Attention Mechanism
(Software College, Liaoning Technical University, Huludao 125105, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 417次   下载 1021
Received:November 05, 2023    Revised:December 04, 2023
中文摘要: 为了解决会话推荐系统中数据稀疏性问题, 提出了一种基于注意力机制的自监督图卷积会话推荐模型(self-supervised graph convolution session recommendation based on attention mechanism, ATSGCN). 该模型将会话序列构建成3个不同的视图: 超图视图、项目视图和会话视图, 显示会话的高阶和低阶连接关系; 其次, 超图视图使用超图卷积网络来捕获会话中项目之间的高阶成对关系, 项目视图和会话视图分别使用图卷积网络和注意力机制来捕获项目和会话级别局部数据中的低阶连接信息; 最后, 通过自监督学习使两个编码器学习到的会话表示之间的互信息最大化, 从而有效提升推荐性能. 在Nowplaying和Diginetica两个公开数据集上进行对比实验, 实验结果表明, 所提模型性能优于基线模型.
Abstract:To address the challenge of data sparsity within session recommendation systems, this study introduces a self-supervised graph convolution session recommendation model based on the attention mechanism (ATSGCN). The model constructs the session sequence into three distinct views: the hypergraph view, item view, and session view, showing the high-order and low-order connection relationships of the session. Secondly, the hypergraph view employs hypergraph convolutional networks to capture higher-order pairwise relationships among items within a conversation. The item view and session view employ graph convolutional networks and attention mechanisms respectively to capture lower-order connection details within local conversation data at both item and session levels. Finally, self-supervised learning is adopted to maximize the mutual information between the session representations learned by the two encoders, thereby effectively improving recommendation performance. Comparative experiment on the Nowplaying and Diginetica public datasets demonstrates the superior performance of the proposed model over the baseline model.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(52174184)
引用文本:
吴永庆,朱月,王钰涵.基于注意力机制的自监督图卷积会话推荐.计算机系统应用,2024,33(5):57-66
WU Yong-Qing,ZHU Yue,WANG Yu-Han.Self-supervised Graph Convolution Session Recommendation Based on Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2024,33(5):57-66