###
计算机系统应用英文版:2024,33(4):288-295
本文二维码信息
码上扫一扫!
面向销售数据的多项缺失值关联性的增量填补
(1.武汉科技大学 计算机科学与技术学院, 武汉430081;2.武汉科技大学 智能信息处理与实时工业系统湖北省重点实验室, 武汉430081;3.武汉海云健康科技股份有限公司 技术管理部门, 武汉430081)
Incremental Filling of Multiple Missing Value Correlations for Sales Data
(1.School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China;2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, China;3.Technical Management Department, Wuhan Haiyun Health Science & Technology Co. Ltd., Wuhan 430081, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 253次   下载 839
Received:October 18, 2023    Revised:November 15, 2023
中文摘要: 数据缺失会影响数据的质量, 可能导致分析结果的不准确和降低模型的可靠性, 缺失值填补能减低偏差方便后续分析. 大多数的缺失值填补算法, 都是假设多项缺失值之间是弱相关甚至无相关, 很少考虑缺失值之间的相关性以及填补顺序. 在销售领域中对缺失值进行独立填补, 会减少缺失值信息的利用, 从而对缺失值填补的准确度造成较大的影响. 针对以上问题, 本文以销售领域为研究目标, 根据销售行为的多维度特征, 利用不同模型输出值的空间分布特征特性, 探索多项缺失值的填补更新机制, 研究面向销售数据多项缺失值增量填补方法, 根据特征相关性, 对缺失特征排序并用已填补的数据作为信息要素融合对后面的缺失值进行增量填补. 该算法同时考虑了模型的泛化性和缺失数据之间的信息相关问题, 并结合多模型融合, 对多项缺失值进行有效填补. 最后基于真实连锁药店销售数据集通过大量实验对比验证了所提算法的有效性.
Abstract:Missing data affects the quality of the data, which may lead to inaccurate results and reduce the reliability of the model. Missing value filling reduces the bias and facilitates subsequent analysis. Most missing value filling algorithms assume a weak correlation or even no correlation between multiple missing values, with little consideration of the correlation between missing values and the order of filling. Independent filling of missing values in the sales domain reduces the utilization of missing value information, which has a greater impact on the accuracy of missing value filling. To address the above problems, this study takes the sales field as the research objective and explores the updating mechanism of multiple missing values based on the multidimensional characteristics of sales behavior and the spatial distribution characteristics of output values of different models. In addition, the work studies the incremental filling method of multiple missing values of sales data, which is based on the correlation of features, orders the missing features, and fuses the already-filled data as an information element to incrementally fill in the following missing values. The algorithm also takes into account the generalization of the model. The algorithm takes into account the generalization of the model and the information correlation between the missing data and combines with multi-model fusion to effectively fill multiple missing values. Finally, the effectiveness of the proposed algorithm is verified by a large number of experimental comparisons based on a real-chain drugstore sales dataset.
文章编号:     中图分类号:    文献标志码:
基金项目:武汉市重点研发计划(2022012202015070); 武汉东湖新技术开发区“揭榜挂帅”项目(2022KJB126)
引用文本:
刘智,李涛,袁冲.面向销售数据的多项缺失值关联性的增量填补.计算机系统应用,2024,33(4):288-295
LIU Zhi,LI Tao,YUAN Chong.Incremental Filling of Multiple Missing Value Correlations for Sales Data.COMPUTER SYSTEMS APPLICATIONS,2024,33(4):288-295