###
计算机系统应用英文版:2024,33(4):263-270
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于多分主干外部注意力网络的水声信号识别
(1.福建理工大学 计算机科学与数学学院 福建省大数据挖掘与应用技术重点实验室, 福州 350118;2.闽江学院 计算机与大数据学院 福建省信息处理与智能控制重点实验室, 福州 350121)
Underwater Acoustic Signal Recognition Based on Multi-backbone External Attention Network
(1.Fujian Provincial Key Laboratory of Big Data Mining and Applications, School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China;2.Fujan Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Data Science, Minjiang University, Fuzhou 350121, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 280次   下载 816
Received:September 14, 2023    Revised:October 25, 2023
中文摘要: 水声信号识别近年来备受关注, 由于海洋信道具有时变空变性、信号传播的衰落特性和水下目标声源具有复杂多变性, 水声信号识别任务面临巨大挑战. 传统的水声信号识别方法难以充分获取目标的表征信息且不具备良好的抗噪声能力, 识别效果有待提升. 针对上述问题, 本文提出一种基于多分支外部注意力网络(multi-branch external attention network, MEANet)的水声信号识别方法, 可以在复杂海洋环境下充分获取水声信号的特征并进行识别. MEANet由多分支主干网络, 通道、空间注意力模块和外部注意力模块组成. 首先, 输入数据通过多个并行的主干网络分支, 提取水声信号不同层级的特征信息; 其次, 辅以通道、空间注意力模块对水声信号的通道和空间维度分别进行加权, 调节不同通道和空间位置对特征表示的重要性; 最后, 整合外部注意力模块, 以外部记忆单元和附加计算来引导网络的特征提取和预测, 从而显著提高模型的识别率和鲁棒性. 实验结果表明, 本文提出的MEANet在ShipsEar数据集上的水声信号识别率达到98.84%, 显著优于其他对比算法, 证实了其有效性.
Abstract:In recent years, underwater acoustic target recognition has received considerable attention. However, due to the time-varying and space-varying nature of the underwater acoustic channel, as well as the complex and variable characteristics of the underwater target sound sources, water sound signal recognition tasks face significant challenges. Traditional methods for water sound signal recognition struggle to capture sufficient representation information of the targets and lack robustness against noise, resulting in suboptimal recognition performance. To address these issues, this study proposes a water sound signal recognition method based on the multi-branch external attention network (MEANet), which can effectively extract features and perform recognition in complex marine environments. MEANet consists of multiple branches for the backbone network, channel and spatial attention modules, and external attention modules. Firstly, the study feeds the input data through multiple parallel branches of the backbone network to extract features at different levels from the water sound signals. Secondly, it employs the channel and spatial attention modules to weight the channels and spatial dimensions of the water sound signals. Finally, the external attention module integrates external memory units and additional computations to guide feature extraction and prediction, significantly improving the recognition rate and robustness of the model. Experimental results demonstrate that the proposed MEANet achieves a recognition rate of 98.84% on the ShipsEar dataset, outperforming other comparative algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省自然科学基金青年创新项目(2021J05202); 福建省发树慈善基金会资助研究专项(MFK23006); 国家自然科学基金(61972187); 福建省卫生健康重大科研专项(2021ZD01004)
引用文本:
王越,李佐勇,颜佳泉,胡蓉.基于多分主干外部注意力网络的水声信号识别.计算机系统应用,2024,33(4):263-270
WANG Yue,LI Zuo-Yong,YAN Jia-Quan,HU Rong.Underwater Acoustic Signal Recognition Based on Multi-backbone External Attention Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(4):263-270