###
计算机系统应用英文版:2024,33(4):215-225
本文二维码信息
码上扫一扫!
基于边缘图与多尺度特征融合的图像修复
(西安科技大学 通信与信息工程学院, 西安 710600)
Image Restoration Based on Edge Map and Multi-scale Feature Fusion
(College of Communication and Information Technology, Xi’an University of Science and Technology, Xi’an 710600, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 395次   下载 1256
Received:September 13, 2023    Revised:November 09, 2023
中文摘要: 针对现有的图像修复方法在面对大规模图像缺损和不规则破损区域修复时, 修复结果出现生成结构与原图像语义不符以及纹理细节模糊等问题, 本文提出一种利用生成边缘图的多尺度特征融合图像修复算法——MSFGAN (multi-scale feature network model based on edge condition). 模型采用两阶段网络设计, 使用边缘图作为修复条件对修复结果进行结构约束. 首先, 使用Canny算子提取待修复图像的边缘图进行完整边缘图生成; 然后利用完整的边缘图结合待修复图像进行图像修复. 为了弥补图像修复算法中经常出现的问题, 提出一种融入了注意力机制的多尺度特征融合模块(attention mechanism multi-fusion convolution block, AM block), 实现受损图像的特征提取和特征融合. 在图像修复网络解码器部分引入跳跃链接, 将高级语义提取和底层特征进行融合实现高质量细节纹理修复. 在CelebA和Places2数据集上的测试结果显示, MSFGAN 修复质量上比当前修复方法有一定提升, 其中在20%–30%掩码比例中, SSIM平均提升0.0291, PSNR提升1.535 dB, 使用消融实验验证了当前优化和创新点在图像修复任务中的有效性.
Abstract:In the face of large-scale image defects and irregular damage areas, existing image restoration methods often produce results with structural inconsistencies and blurry texture details. This study proposes an image restoration algorithm using the generated edge map and multi-scale feature fusion—MSFGAN (multi-scale feature network model based on edge condition). The model adopts a two-stage network design, using the edge map as a restoration condition to constrain the structural aspects of the restoration results. Firstly, the Canny operator is used to extract the edge map of the image to be restored, generating a complete edge map. Then, the complete edge map is combined with the image to be restored for image restoration. To address common issues in image restoration algorithms, an Attention Mechanism Multi-Fusion convolution block (AM block) is proposed, integrating an attention mechanism for feature extraction and fusion of damaged images. Skip connections are introduced in the decoder part of the image restoration network to fuse high-level semantics and low-level features, achieving high-quality detail and texture restoration. Test results on the CelebA and Places2 datasets show that MSFGAN has improved restoration quality compared to current methods. In the 20%–30% mask ratio, the average improvement of SSIM is 0.0291, and PSNR improvement is 1.535 dB. Ablation experiments validate the effectiveness of the proposed optimization and innovations in image restoration tasks.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省重点研发计划 (2023-YBGY-255); 陕西省科技厅工业攻关(2022GY-115) ; 陕西省教育厅服务地方企业(22JC050)
引用文本:
黄健,王虎,赵小飞.基于边缘图与多尺度特征融合的图像修复.计算机系统应用,2024,33(4):215-225
HUANG Jian,WANG Hu,ZHAO Xiao-Fei.Image Restoration Based on Edge Map and Multi-scale Feature Fusion.COMPUTER SYSTEMS APPLICATIONS,2024,33(4):215-225