###
计算机系统应用英文版:2024,33(4):226-234
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于多层次的海洋生物分类
(1.青岛科技大学 信息科学技术学院, 青岛266061;2.哈尔滨工业大学 计算机科学与技术学院, 哈尔滨150001)
Multi-hierarchical Classification for Marine Organisms
(1.School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China;2.School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 281次   下载 1237
Received:October 08, 2023    Revised:November 09, 2023
中文摘要: 本文提出了一种多层次海洋生物分类方法. 海洋生物种类繁多, 且同门类生物具有较强的类间相似性, 而不同门类生物具有较大的差异. 我们利用物种间的相似性, 帮助网络学习生物先验知识, 设计出了一种多层次分类方法. 设计了C-MBConv模块, 并结合多层次分类方法改进了EfficientNetV2网络架构, 改进后的网络架构称为CM-EfficientNetV2. 我们的实验表明CM-EfficientNetV2比原网络EfficientNetV2有着更高的准确率, 在南麂列岛潮间带海洋生物数据集上准确率提高了1.5%, 在CIFAR-100上准确率提高了2%.
中文关键词: 分类  多层次  卷积  海洋生物  图像识别  深度学习
Abstract:This study proposes a multi-hierarchical classification method for marine organisms. Marine organisms are diverse, and organisms of the same phylum have strong inter-class similarity, while organisms of various phyla have large differences. Meanwhile, a multi-hierarchical classification method is designed by utilizing the similarity among species to help the network learn biological prior knowledge. Additionally, this study designs a C-MBConv module and improves the EfficientNetV2 network architecture by combining the multi-hierarchical classification method, and the improved network architecture is called CM-EfficientNetV2. The experiments show that CM-EfficientNetV2 has higher accuracy than the original network EfficientNetV2, with an accuracy improvement of 1.5% on the inter-tidal marine biology dataset of the Nanji Islands and 2% on CIFAR-100.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
赵东,程远志.基于多层次的海洋生物分类.计算机系统应用,2024,33(4):226-234
ZHAO Dong,CHENG Yuan-Zhi.Multi-hierarchical Classification for Marine Organisms.COMPUTER SYSTEMS APPLICATIONS,2024,33(4):226-234