###
计算机系统应用英文版:2024,33(2):159-165
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于改进U2Net的岩石薄片图像分割
(1.四川大学 电子信息学院, 成都 610065;2.成都西图科技有限公司, 成都 610065)
Image Segmentation of Rock Thin Sections Based on Improved U2Net
(1.College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;2.Chengdu Xitu Technology Co. Ltd., Chengdu 610065, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 492次   下载 1264
Received:July 27, 2023    Revised:September 01, 2023
中文摘要: 了解岩石的孔隙度、孔径分布、孔隙连通性等特征对于油气的寻找和开采有着重要的意义, 而这些特征的分析和判断需要借助岩石薄片图像分割技术. 岩石薄片图像有大量细小颗粒, 这些颗粒之间的边缘特征十分相似, 无法做出精准的区分, 同时制造切片过程中染色不均会造成薄片孔隙的颜色特征不平衡而导致无法分割. 因此为了改善岩石薄片分割效果, 本文提出基于一种改进的U2Net的分割算法. 主要内容如下: (1)以U2Net网络为骨干进行改进, 结合coordinate attention注意力机制, 用来提高模型对图像特征的表达能力. (2)通过引入多尺度特征提取模块, 增加卷积层的感知区域, 且能够利用特征图的多尺度特征信息. 实验证明, 该方法与传统分割方法和其他分割网络相比在较小颗粒的分割上表现更好, 所提出的算法具有较高的分割准确度和鲁棒性.
Abstract:It is important to understand the characteristics of rock porosity, pore size distribution, and pore connectivity for oil and gas exploration and exploitation, and the analysis and judgment of these characteristics need to rely on the image segmentation technology of rock thin sections. There are a large number of fine particles in the images of rock thin sections, and the edge features among these particles are very similar, which cannot be accurately distinguished. Meanwhile, uneven staining during section manufacturing will cause unbalanced color characteristics of the pores of the thin sections, resulting in the inability to segment. Therefore, to improve the segmentation effect of rock thin sections, this study proposes an improved segmentation algorithm based on U2Net. The main contents are as follows. (1) The U2Net network is adopted as the backbone to improve the model’s ability to express image features, and coordinate attention is combined to enhance the ability to express image features. (2) The introduction of a multi-scale feature extraction module enlarges the receptive field of the convolutional layers and enables the utilization of multi-scale feature information from the feature map. Empirical evaluations demonstrate that the proposed method outperforms conventional segmentation techniques and other state-of-the-art segmentation networks in small particle segmentation. Additionally, the proposed algorithm exhibits superior segmentation accuracy and robustness.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金 (62071315)
引用文本:
舒小锋,吴晓红,卿粼波,滕奇志,罗彬彬.基于改进U2Net的岩石薄片图像分割.计算机系统应用,2024,33(2):159-165
SHU Xiao-Feng,WU Xiao-Hong,QING Lin-Bo,TENG Qi-Zhi,LUO Bin-Bin.Image Segmentation of Rock Thin Sections Based on Improved U2Net.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):159-165