###
计算机系统应用英文版:2024,33(1):87-98
本文二维码信息
码上扫一扫!
基于场矩阵分解机和CNN的点击率预测模型
(安徽师范大学 计算机与信息学院, 芜湖 241002)
Click-through Rate Prediction Model Based on Field-matrixed Factorization Machines and CNN
(School of Computer and Information, Anhui Normal University, Wuhu 241002, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 366次   下载 1086
Received:July 03, 2023    Revised:August 08, 2023
中文摘要: 点击率预测是在线广告和推荐系统的基本任务之一. 主流模型通常通过对高阶和低阶特征进行特征交互建模来提升性能和泛化能力. 然而, 许多模型往往仅学习每个特征的固定表示, 而忽视了特征在不同上下文中的重要性, 并且一些模型结构过于简单. 因此, 本文提出了特征细化卷积神经网络融合场矩阵分解机(FRCNN-F)模型, 以解决这些问题. 首先, 在特征细化网络(FRNet)中融合了卷积神经网络的特征生成模块, 利用其在局部模式下重新组合生成新特征的优势, 提升了重要特征选择能力. 其次, 设计了场矩阵分解机, 使模型能够感知上下文并通过不同场的交互进行显示建模, 从而增加了子模型的组合方式. 最后, 通过在 Frappe 和 MovieLens 两个公开数据集上对比实验, 实验结果表明, FRCNN-F模型相比基线FRNet在AUC得分分别提升了0.32%和0.40%, 交叉熵损失函数Logloss分别降低了1.50%和1.11%. 该研究对于实现广告的精准投放和个性化推荐具有实际应用的价值.
Abstract:Predicting click-through rate (CTR) is a fundamental task in online advertising and recommendation systems. Mainstream models often enhance performance and generalization by modeling interactions between high-order and low-order features. However, many models only learn fixed representations of each feature, neglecting the importance of features in different contexts and having overly simplistic model structures. To address these issues, this study proposes the feature refinement convolutional neural network-fusion matrix factorization (FRCNN-F) model. Firstly, the study integrates the feature generation module of convolutional neural networks into the feature refinement network (FRNet), leveraging its ability to generate new features by recombining local patterns to enhance important feature selection. Secondly, the study designs the fusion matrix factorization mechanism to enable the model to perceive context and model displays through interactions across different scenarios, thereby enhancing the combination of submodels. Finally, through comparative experiments on the publicly available datasets Frappe and MovieLens, the results demonstrate that the FRCNN-F model outperforms the baseline FRNet, with improvements of 0.32% and 0.40% in AUC scores and reductions of 1.50% and 1.11% in cross-entropy loss (Logloss) respectively. This research has practical applications in achieving precise advertising and personalized recommendations.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金 (61976006)
引用文本:
王志格,李汪根,夏义春,高坤,束阳,葛英奎.基于场矩阵分解机和CNN的点击率预测模型.计算机系统应用,2024,33(1):87-98
WANG Zhi-Ge,LI Wang-Gen,XIA Yi-Chun,GAO Kun,SHU Yang,GE Ying-Kui.Click-through Rate Prediction Model Based on Field-matrixed Factorization Machines and CNN.COMPUTER SYSTEMS APPLICATIONS,2024,33(1):87-98