###
计算机系统应用英文版:2023,32(11):286-293
本文二维码信息
码上扫一扫!
基于服务负载的时序QoS预测
(1.中国石油大学(华东) 青岛软件学院、计算机科学与技术学院, 青岛 266580;2.中石化胜利油田分公司 信息化管理中心, 东营 257001;3.中石化胜利石油管理局有限公司 信息化技术服务中心, 东营 257001)
Time-series QoS Prediction Based on Service Load
(1.Qingdao Institute of Software & College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China;2.Information Management Center, Sinopec Shengli Oilfield Branch, Dongying 257001, China;3.Information Technology Service Center, Sinopec Shengli Petroleum Management Bureau Co. Ltd., Dongying 257001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 465次   下载 1399
Received:April 07, 2023    Revised:May 06, 2023
中文摘要: 网络技术的发展和多接入边缘计算的兴起使得计算和网络资源的部署逐渐靠近终端. 随着服务数量的增多, 为了向用户更好地推荐服务, 如何在复杂、动态的边缘计算环境中实时、准确地预测服务质量(quality of service, QoS)成为一项挑战. 本文提出一种基于服务负载实时预测QoS的深度神经模型(QPSL), 它可以为边缘计算中的QoS预测提供缺少的负载状况感知和周期感知. 首先, 对服务的负载状况进行特征表示, 并通过时序分解模块获取时序特征. 其次, 将CNN和BiLSTM结合, 学习潜在的时序关系, 生成不同时刻的状态向量. 然后, 基于Attention机制为历史时刻的状态向量分配权重, 从而构造未来时刻的状态向量. 最后, 将上下文嵌入向量与状态向量送入感知层完成实时QoS预测. 基于真实的融合数据集进行了大量的实验, 结果表明QPSL在响应时间和吞吐量任务上的MAE分别平均提升了10.28%和10.87%, 优于现有的时间感知QoS预测方法.
Abstract:The advance in network technology and the rise of multi-access edge computing have led to the deployment of computation and network resources closer to the end users. As the service numbers increase, it is a challenge to predict the quality of service (QoS) in real-time and accurately in the complex and dynamic edge computing environment to better recommend services to users. In this study, a deep neural model for real-time QoS prediction based on service load (QPSL) is proposed, which can provide missing load condition awareness and cycle awareness for QoS prediction in edge computing. Firstly, the service load condition is characterized, and the features of the time-series are obtained by the time-series decomposition module. Secondly, CNN and BiLSTM are combined to learn the potential time-series relationships and generate the state vectors at different time intervals. Then, the state vectors at future time intervals are constructed by assigning weights to the historical state vectors based on the Attention mechanism. Finally, contextual embedding vectors and state vectors are fed into the perception layer to complete the real-time QoS prediction. Extensive experiments are conducted based on a real fusion dataset, and the results show that QPSL improves MAE by 10.28% and 10.87% on average for response time and throughput tasks respectively, outperforming existing time-aware QoS prediction methods.
文章编号:     中图分类号:    文献标志码:
基金项目:山东省自然科学基金(ZR2020MF006, ZR2022LZH015)
引用文本:
张红霞,武梦德,王登岳,董琰,高增海.基于服务负载的时序QoS预测.计算机系统应用,2023,32(11):286-293
ZHANG Hong-Xia,WU Meng-De,WANG Deng-Yue,DONG Yan,GAO Zeng-Hai.Time-series QoS Prediction Based on Service Load.COMPUTER SYSTEMS APPLICATIONS,2023,32(11):286-293