###
计算机系统应用英文版:2023,32(10):166-174
本文二维码信息
码上扫一扫!
社交网络下的移动群智感知任务扩散
(中国科学技术大学 大数据学院, 合肥 230026)
Task Diffusion of Mobile Crowdsensing in Social Network
(School of Data Science, University of Science and Technology of China, Hefei 230026, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 542次   下载 1242
Received:March 19, 2023    Revised:April 20, 2023
中文摘要: 移动群智感知是智慧城市数字化建设的核心基础技术之一, 是移动计算领域的热点研究课题. 近年来, 移动群智感知虽然已有许多代表性的研究成果, 但从整体上看距离大规模的普及应用仍有不少距离, 在实际推广应用中仍面临着用户参与度不高的问题. 为此, 引入社交网络IM (影响最大化)传播模型, 考虑到现实情况下概率信息的缺失, 通过在线学习的方式, 在进行影响力活动的同时学习影响力概率, 即根据用户反馈不断更新影响力模型信息, 从而提出新的基于该模型的任务扩散方案. 通过使用真实的社交网络数据集进行实验, 结果表明提出的方法在传播范围方面比传统的IM方法更有效, 为移动群智感知系统的实际推广应用做出贡献.
Abstract:Mobile crowdsensing is one of the core basic technologies in the digital construction of smart cities, and it is a hot research topic in the field of mobile computing. In recent years, although there have been many representative research results on mobile crowdsensing, there is still a long way to go before it is widely used on a large scale, and it still faces the problem of low user participation in the actual promotion and application. To this end, the social network influence maximization (IM) transmission model is introduced. It considers the lack of probabilistic information in reality and learns the probability of influence while performing influence activities through online learning, or in other words, the influence model information is constantly updated according to the user feedback, so as to propose a new task diffusion scheme based on the model. Through experiments with real social network data sets, the results show that the proposed method is more effective than the traditional IM method in terms of transmission scope, and it makes a contribution to the practical promotion and application of mobile crowdsensing systems.
文章编号:     中图分类号:    文献标志码:
基金项目:江苏省自然科学基金面上项目(BK20191194)
引用文本:
孙驰.社交网络下的移动群智感知任务扩散.计算机系统应用,2023,32(10):166-174
SUN Chi.Task Diffusion of Mobile Crowdsensing in Social Network.COMPUTER SYSTEMS APPLICATIONS,2023,32(10):166-174