本文已被:浏览 770次 下载 1658次
Received:January 16, 2023 Revised:February 13, 2023
Received:January 16, 2023 Revised:February 13, 2023
中文摘要: 婴儿面部表情智能化识别, 可辅助看护人员更好地关注婴儿的身心健康. 由于婴儿面部线条流畅且五官锐感偏弱导致面部表情类间相似性高于成人, 为了解决类间相似性高的问题, 提出多尺度信息融合网络. 该网络整体分为2个阶段: 在第1阶段使用融合模块在空间域与通道域双重维度下融合局部特征与全局特征, 增强特征的表达能力; 在第2阶段采用自适应深度中心损失, 利用注意力机制估计融合特征的权重用以指导中心损失, 促进婴儿表情特征的类内紧凑和类间分离. 实验结果表明, 多尺度信息融合网络在婴儿面部表情数据集中识别准确率达到95.46%, 在AUC、召回率和F1得分3个评价指标上分别达到99.07%、95.88%和95.89%, 与现有面部表情识别网络相比, 识别效果最优. 将多尺度信息融合网络在公开面部表情数据集上进行泛化性实验, 准确率达到89.87%.
Abstract:The intelligent recognition of infant facial expressions can help caregivers to better pay attention to the physical and mental health of infants. Due to the smooth facial lines and weak sharpness of facial features, the inter-class similarity of infants’ facial expressions is higher than that of adults. To address the problem of high inter-class similarity, this study proposes a multi-scale information fusion network. The network is divided into two stages as a whole. In the first stage, the fusion module is applied to fuse local features with global features in the dual dimensions of both spatial and channel domains to enhance the expression ability of features. In the second stage, the self-adaptive deep centre loss is employed to estimate the weights of fused features based on the attentional mechanism, thus guiding the center loss and promoting the intra-class compactness and inter-class separation of infant expression features. The experimental results show that the multi-scale information fusion network achieves a recognition accuracy of 95.46% in the infant facial expressions dataset, reaching 99.07%, 95.88%, and 95.89% in the three evaluation metrics of AUC, recall, and F1 score respectively. The recognition effectiveness is optimal compared with the existing facial expression recognition networks. The generalization experiments of the multi-scale information fusion network are conducted on the public facial expressions dataset, with an accuracy of 89.87%.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61771340)
引用文本:
耿磊,齐婷婷,张芳,肖志涛,李月龙.基于MIFNet的婴儿面部表情识别.计算机系统应用,2023,32(8):42-53
GENG Lei,QI Ting-Ting,ZHANG Fang,XIAO Zhi-Tao,LI Yue-Long.Facial Expression Recognition of Infants Based on MIFNet.COMPUTER SYSTEMS APPLICATIONS,2023,32(8):42-53
耿磊,齐婷婷,张芳,肖志涛,李月龙.基于MIFNet的婴儿面部表情识别.计算机系统应用,2023,32(8):42-53
GENG Lei,QI Ting-Ting,ZHANG Fang,XIAO Zhi-Tao,LI Yue-Long.Facial Expression Recognition of Infants Based on MIFNet.COMPUTER SYSTEMS APPLICATIONS,2023,32(8):42-53