###
计算机系统应用英文版:2023,32(6):204-211
本文二维码信息
码上扫一扫!
基于ECA的YOLOv5水下鱼类目标检测
(1.山东建筑大学 信息与电气工程学院 山东省智能建筑技术重点实验室, 济南 250101;2.山东正晨科技股份有限公司, 济南 250101)
ECA-based YOLOv5 Underwater Fish Target Detection
(1.Shandong Provincial Key Laboratory of Intelligent Building Technology, The School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China;2.Shandong Zhengchen Technology Co. Ltd., Jinan 250101, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 640次   下载 2283
Received:December 06, 2022    Revised:January 06, 2023
中文摘要: 针对水下图像模糊、颜色失真, 水下场景环境复杂、目标特征提取能力有限等导致的水下鱼类目标检测精确度低的问题, 提出一种基于YOLOv5的改进水下鱼类目标检测算法. 首先, 针对水下图像模糊、颜色失真的问题, 引入水下暗通道优先 (underwater dark channel prior, UDCP)算法对图像进行预处理, 有助于在不同环境下正确识别目标; 然后, 针对水下场景复杂、目标特征提取能力有限问题, 在YOLOv5网络中引入高效的相关性通道 (efficient channel attention, ECA), 增强对目标的特征提取能力; 最后, 对损失函数进行改进, 提高目标检测框的准确度. 通过实验证明改进后的YOLOv5在水下鱼类目标检测中精确度比原始的YOLOv5提高了2.95%, 平均检测精度(mAP@0.5:0.95)提高了5.52%.
Abstract:To address the low accuracy of underwater fish target detection caused by blurred and color-distorted underwater images, complex underwater scenes, and limited target feature extraction ability, this study proposes an improved underwater fish target detection algorithm based on YOLOv5. Firstly, in response to the blurring and color distortion of underwater images, the underwater dark channel prior (UDCP) algorithm is introduced to pre-process the images, which is helpful for correctly identifying the target in different environments. Then, considering the problems of complex underwater scenes and limited target feature extraction ability, the study introduces an efficient correlation channel, i.e., efficient channel attention (ECA), into the YOLOv5 network to enhance the feature extraction ability of the target. Finally, the loss function is improved to enhance the accuracy of the target detection box. Experiments show that the accuracy of the improved YOLOv5 in underwater fish target detection is 2.95% higher than that of the original YOLOv5, and the average detection accuracy (mAP@0.5:0.95) is increased by 5.52%.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62073196); NSFC-山东联合基金(U1806204)
引用文本:
曹建荣,庄园,汪明,韩发通,郑学汉,高鹤.基于ECA的YOLOv5水下鱼类目标检测.计算机系统应用,2023,32(6):204-211
CAO Jian-Rong,ZHUANG Yuan,WANG Ming,HAN Fa-Tong,ZHENG Xue-Han,GAO He.ECA-based YOLOv5 Underwater Fish Target Detection.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):204-211