###
计算机系统应用英文版:2023,32(7):269-275
本文二维码信息
码上扫一扫!
基于异质图卷积注意网络的社交媒体账号分类
(1.东南大学 计算机科学与工程学院, 南京 211189;2.中国电子科技集团公司第三十研究所, 成都 610041;3.电子科技大学 信息域通信工程学院, 成都 611731)
Social Media Account Classification Based on Heterogeneous Graph Convolutional Attention Network
(1.School of Computer Science and Engineering, Southeast University, Nanjing 211189, China;2.The 30th Research Institute of China Electronics Technology Group Corporation, Chengdu 610041, China;3.School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 437次   下载 1224
Received:December 13, 2022    Revised:January 06, 2023
中文摘要: 由于社交媒体网络的复杂性, 单一性质的同质信息网络对社交媒体账号分类会造成信息丢失, 对分类结果产生不利影响. 针对这种问题, 本文提出基于异质图卷积注意网络的社交媒体账号分类方法(HGCANA). 首先构建社交媒体的异质信息网络, 然后提取异质信息网络的社交媒体特征, 引入注意力机制, 对社交媒体账号进行分类识别. 通过实验比较HGCANA方法与现有方法, 证明了本文提出的HGCANA方法能够更好地对社交网络媒体账号进行有效分类.
Abstract:Due to the complexity of social media networks, the classification of social media accounts by mono-nature homogeneous information networks causes information loss and has a negative impact on the classification results. To solve this problem, this study proposes a social media account classification method based on heterogeneous graph convolutional attention networks (HGCANA). Specifically, a heterogeneous information network of social media is constructed, and the social media features of the network are extracted. After that, the attention mechanism is introduced to classify and identify social media accounts. The HGCANA method is compared with the existing methods through experiments, and it is proved that the HGCANA method registers better performance in the effective classification of social media accounts.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈周国,丁建伟,明杨,费高雷.基于异质图卷积注意网络的社交媒体账号分类.计算机系统应用,2023,32(7):269-275
CHEN Zhou-Guo,DING Jian-Wei,MING Yang,FEI Gao-Lei.Social Media Account Classification Based on Heterogeneous Graph Convolutional Attention Network.COMPUTER SYSTEMS APPLICATIONS,2023,32(7):269-275