本文已被:浏览 544次 下载 1591次
Received:October 07, 2022 Revised:November 30, 2022
Received:October 07, 2022 Revised:November 30, 2022
中文摘要: 针对麻雀搜索算法容易因初始种群的多样性不足, 导致算法的搜索能力下降; 以及在搜索后期, 算法容易陷入到局部最优的问题, 提出一种多策略融合的麻雀搜索算法(multi-strategy fusion sparrow search algorithm, ISSA). 在算法初始化阶段, 引入高维Sine混沌映射来初始化种群, 提高初始种群的质量, 增强种群多样性; 其次, 引入衰减因子, 作用在发现者阶段, 衰减因子的自适应性, 平衡了前期全局搜索和后期局部寻优的性能; 最后引入柯西变异和变化选择策略, 让搜索个体可以跳出局部限制继续搜索, 增强局部搜索能力. 随机抽取6个benchmark测试函数, 实验结果验证了ISSA在寻找最优值等方面相比原算法得到了有效的提升.
中文关键词: 麻雀搜索算法 高维Sine混沌映射 自适应 衰减因子 柯西变异
Abstract:The search ability of the sparrow search algorithm is easy to decline due to insufficient diversity of the initialization population, and the algorithm is easy to fall into local optimal in the late search period. In view of these problems, a multi-strategy fusion sparrow search algorithm (ISSA) is proposed. Specifically, the high-dimensional Sine chaotic mapping is introduced to initialize the population in the algorithm’s initialization stage, so as to improve the quality of the initial population and enhance the diversity of the population. Then, the attenuation factor is introduced in the discoverer stage, and the adaptability of the attenuation factor balances the performance of the early global search and the later local optimization. Finally, the Cauchy mutation and change selection strategy are introduced so that the searching individual can jump out of the local limit to continue the search and enhance the local search ability. Six benchmark test functions are randomly selected, and the experimental results verify that ISSA has been effectively improved compared with the original algorithm in terms of finding the optimal value.
keywords: sparrow search algorithm (SSA) high-dimensional sine chaos mapping adaptive attenuation factor Cauchy mutation
文章编号: 中图分类号: 文献标志码:
基金项目:宁波市自然科学基金(2021J135)
引用文本:
王辉,童楠,符强.多策略融合的麻雀搜索算法.计算机系统应用,2023,32(6):159-165
WANG Hui,TONG Nan,FU Qiang.Sparrow Search Algorithm with Multiple Strategies Fusion.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):159-165
王辉,童楠,符强.多策略融合的麻雀搜索算法.计算机系统应用,2023,32(6):159-165
WANG Hui,TONG Nan,FU Qiang.Sparrow Search Algorithm with Multiple Strategies Fusion.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):159-165