本文已被:浏览 756次 下载 1797次
Received:November 17, 2022 Revised:December 23, 2022
Received:November 17, 2022 Revised:December 23, 2022
中文摘要: 针对增量式入侵检测算法由于对旧知识产生灾难性遗忘而导致对旧类别数据分类准确率不高的问题, 本文提出了一种基于非对称式多特征融合自动编码器(asymmetric multi-feature fusion auto-encoder, AMAE)和全连接分类神经网络(classification deep neural network, C-DNN)的增量式入侵检测算法(ImFace). 在增量学习阶段, ImFace会为每一批新的数据集训练一个AMAE模型和C-DNN模型. 同时, 本文通过使用变分自动编码器(variational auto-encoder, VAE)对数据进行过采样的方式来改善由于数据集不平衡而导致C-DNN对某些类别数据的检测能力不足的问题. 在检测阶段, ImFace将输入数据经过所有AMAE和C-DNN, 然后将AMAE的结果作为置信度来选择某一个C-DNN的输出结果作为最终结果. 本文使用CICIDS2017数据集来检验ImFace算法的有效性. 实验结果表明, ImFace算法不仅能够保留对旧类别的分类能力, 同时对新类别的数据也有很高的检测准确率.
Abstract:To address the problem that incremental intrusion detection algorithms do not classify old category data with high accuracy due to catastrophic forgetting of old knowledge, this study proposes an incremental intrusion detection algorithm (ImFace) based on asymmetric multi-feature fusion auto-encoder (AMAE) and fully connected classification deep neural network (C-DNN). In the incremental learning phase, ImFace trains an AMAE model and a C-DNN model for each new batch of the dataset. At the same time, this study solves the problem of C-DNN’s insufficient ability to detect certain categories of data due to unbalanced datasets by oversampling the data through a variational auto-encoder (VAE). In the detection phase, ImFace makes the input data pass through all AMAEs and C-DNNs and then uses the result of AMAEs as the confidence level to select the output result of a C-DNN as the final result. In this study, the CICIDS2017 dataset is used to test the effectiveness of the ImFace algorithm. The experimental results show that the ImFace algorithm not only retains the ability to classify old categories but also has a high detection accuracy for new categories of data.
keywords: intrusion detection asymmetric multi-feature fusion auto-encoder (AMAE) catastrophic forgetting incremental learning variational auto-encoder (VAE) deep learning target detection
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(2021YFC3320301); 国家自然科学基金(61877015); 浙江省自然科学基金(LY21F020028)
引用文本:
张碧洪,夏海霞,张宇,高志刚.基于多特征融合自动编码器的增量式入侵检测.计算机系统应用,2023,32(6):42-50
ZHANG Bi-Hong,XIA Hai-Xia,ZHANG Yu,GAO Zhi-Gang.Incremental Intrusion Detection Based on Multi-feature Fusion Auto-encoder.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):42-50
张碧洪,夏海霞,张宇,高志刚.基于多特征融合自动编码器的增量式入侵检测.计算机系统应用,2023,32(6):42-50
ZHANG Bi-Hong,XIA Hai-Xia,ZHANG Yu,GAO Zhi-Gang.Incremental Intrusion Detection Based on Multi-feature Fusion Auto-encoder.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):42-50