本文已被:浏览 720次 下载 1702次
Received:October 27, 2022 Revised:November 29, 2022
Received:October 27, 2022 Revised:November 29, 2022
中文摘要: 针对DeepLabV3+在特征提取阶段忽略了不同尺度特征重要程度出现的部分细节信息损失导致图像分割不细致, 提出一种融合双分支特征提取和注意力机制的改进算法. ResNet101骨干网络初步提取出的特征图作为注意力机制的输入特征, 解决了网络退化及梯度消失的问题, 也能够捕获到被DeepLabV3+忽略的图像细节信息; 设计双分支特征提取机制扩大特征提取能力, 细化图像边缘信息以优化网络对不同尺度特征关注不均的问题; 同时, 联合采用交叉熵损失和类别不平衡函数两种损失函数作为损失函数, 通过聚焦于前景样本降低背景的影响, 提高算法分割精度. 实验结果表明, 改进算法在PASCAL VOC 2012和CityScapes数据集上的平均交并比(MIoU)值分别达到了79.92%和68.59%, 与经典算法和基于DeepLabV3+改进的算法相比, 特征提取的准确性有所提高, 分割效果更优.
Abstract:DeepLabV3+ ignores the loss of part of detail information due to the importance of features at different scales in the feature extraction stage, which results in imprecise image segmentation. In response, this study proposes an improved algorithm integrating dual-branch feature extraction and attention mechanism. The feature map extracted by the ResNet101 backbone network is used as the input feature of the attention mechanism, which solves the problems of network degradation and gradient disappearance and also captures the image details ignored by DeepLabV3+. The dual-branch feature extraction mechanism expands the feature extraction capability and refines the image edge information to optimize the uneven attention of the network to features at different scales. At the same time, the CE loss function and the Dice loss function are jointly used to reduce the influence of background by focusing on foreground samples and improve segmentation accuracy. The experimental results show that the mean intersection over union (MIoU) of the improved algorithm on the PASCAL VOC 2012 and CityScapes datasets reaches 79.92% and 68.59%, respectively. Compared with the classical algorithm and other improved algorithms based on DeepLabV3+, the proposed algorithm obtains a better segmentation effect.
文章编号: 中图分类号: 文献标志码:
基金项目:河南省科技研发项目(212102210078);河南省科技攻关项目(222102210229)
引用文本:
李绍华,于俊洋,郑珂,翟锐.基于双分支融合注意力机制的图像分割算法.计算机系统应用,2023,32(5):212-219
LI Shao-Hua,YU Jun-Yang,ZHENG Ke,ZHAI Rui.Image Segmentation Algorithm Based on Dual-branch Fusion Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2023,32(5):212-219
李绍华,于俊洋,郑珂,翟锐.基于双分支融合注意力机制的图像分割算法.计算机系统应用,2023,32(5):212-219
LI Shao-Hua,YU Jun-Yang,ZHENG Ke,ZHAI Rui.Image Segmentation Algorithm Based on Dual-branch Fusion Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2023,32(5):212-219