###
计算机系统应用英文版:2023,32(3):282-290
本文二维码信息
码上扫一扫!
改进飞鼠搜索算法的自适应图像增强
(西安理工大学 理学院, 西安 710054)
Improved Squirrel Search Algorithm for Adaptive Image Enhancement
(Faculty of Sciences, Xi’an University of Technology, Xi’an 710054, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 557次   下载 1275
Received:July 30, 2022    Revised:September 01, 2022
中文摘要: 为了实现灰度图像增强最佳参数的自动寻优, 提出一种改进飞鼠搜索算法的自适应图像增强方法. 在普通树上的飞鼠位置更新中引入双向搜索策略, 提高获得最好解的可能性; 利用螺旋觅食策略更新位于橡子树上的飞鼠位置, 提升算法的收敛速度和搜索精度. 在CEC 2017测试集上, 将所提算法BCSSA与蝙蝠算法、鲸鱼优化算法、基本的SSA和2种改进的SSA进行对比分析, 结果表明, BCSSA具有更高的稳定性和更快的收敛速度. 最后, 将所提出的BCSSA应用于灰度图像增强, 与经典的直方图均衡化方法和SSA进行了4种评价指标的性能比较, 证明了BCSSA的优越性.
Abstract:In order to realize the automatic optimization of the optimal parameters of grayscale image enhancement, an adaptive image enhancement method based on an improved squirrel search algorithm is proposed. A bilateral search strategy is introduced into the position updating of the squirrels on normal trees to increase the likelihood of obtaining an optimal solution. A cyclone foraging strategy is used to update the position of the squirrels on acorn trees to improve the convergence rate and search accuracy of the algorithm. In addition, the proposed squirrel search algorithm with bilateral search and cyclone foraging (BCSSA) is compared with the bat algorithm (BA), whale optimization algorithm (WOA), basic squirrel search algorithm (SSA), and two improved SSAs on CEC 2017 test suite. The results indicate that BCSSA has higher stability and faster convergence rate. Finally, the proposed BCSSA is applied to grayscale image enhancement, and its performance is compared with that of the classical histogram equalization method and SSA in terms of four evaluation indicators, which thus validates the superiority of BCSSA.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61976176)
引用文本:
高婕,王秋萍,李晓丹.改进飞鼠搜索算法的自适应图像增强.计算机系统应用,2023,32(3):282-290
GAO Jie,WANG Qiu-Ping,LI Xiao-Dan.Improved Squirrel Search Algorithm for Adaptive Image Enhancement.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):282-290