本文已被:浏览 995次 下载 6408次
Received:July 17, 2022 Revised:August 15, 2022
Received:July 17, 2022 Revised:August 15, 2022
中文摘要: 非侵入式负荷监测, 是智能用电和节能技术的重要部分, 备受研究者关注. 由于近年来新发展起来的深度学习方法在各种任务所表现出来的优越性能, 目前已有一些代表性深度学习方法被成功用于非侵入式负荷监测中的负荷分解任务. 为了系统地总结深度学习方法在非侵入式负荷监测领域中的研究现状与进展, 拟对近年来面向深度学习的非侵入式负荷监测研究文献进行分析与归纳. 首先对非侵入式负荷监测的框架进行简要概述; 随后介绍了非侵入式负荷监测的特征提取方法和公开数据集, 并重点分析和归纳了非侵入式负荷监测中面向深度学习的负荷分解方法; 最后对该领域存在的一些挑战及机遇进行了展望, 并指出了其未来的研究方向.
Abstract:Non-intrusive load monitoring (NILM) is an important part of intelligent power utilization and energy saving techniques and has attracted extensive attention. Due to the superior performance of newly-developed deep learning methods in various tasks in recent years, some representative deep learning methods have been successfully applied to the load decomposition task in NILM. To systematically summarize the research status and progress of deep learning methods applied to NILM, this study focuses on analyzing and summarizing the research literature on deep learning based NILM in recent years. Firstly, the NILM framework is outlined, and then the feature extraction method and the public data set of NILM are introduced. In addition, the load decomposition methods based on deep learning in NILM are analyzed and summarized. Finally, the study points out several challenges in this field and provides an outlook on its opportunities and future research directions.
文章编号: 中图分类号: 文献标志码:
基金项目:浙江省自然科学基金重点项目(LZ22F020007)
引用文本:
张石清,王伟,钱亚冠,赵小明,杜磊,章为昆.面向深度学习的非侵入式负荷监测研究进展.计算机系统应用,2023,32(3):25-47
ZHANG Shi-Qing,WANG Wei,QIAN Ya-Guan,ZHAO Xiao-Ming,DU Lei,ZHANG Wei-Kun.Deep Learning-based Non-intrusive Load Monitoring: Recent Advances and Perspectives.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):25-47
张石清,王伟,钱亚冠,赵小明,杜磊,章为昆.面向深度学习的非侵入式负荷监测研究进展.计算机系统应用,2023,32(3):25-47
ZHANG Shi-Qing,WANG Wei,QIAN Ya-Guan,ZHAO Xiao-Ming,DU Lei,ZHANG Wei-Kun.Deep Learning-based Non-intrusive Load Monitoring: Recent Advances and Perspectives.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):25-47