###
计算机系统应用英文版:2023,32(3):1-14
本文二维码信息
码上扫一扫!
蚁群算法在求解旅行商问题中的应用综述
(1.青海师范大学 计算机学院, 西宁 810016;2.华北科技学院 计算机学院, 廊坊 065201;3.华北科技学院 安全工程学院, 廊坊 065201)
Survey on Ant Colony Optimization for Solving Traveling Salesman Problem
(1.School of Computer Science, Qinghai Normal University, Xining 810016, China;2.School of Computer Science, North China Institute of Science and Technology, Langfang 065201, China;3.School of Safety Engineering, North China Institute of Science and Technology, Langfang 065201, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1214次   下载 4003
Received:July 29, 2022    Revised:September 01, 2022
中文摘要: 旅行商问题作为组合优化研究中最具挑战的问题之一, 自被提出以来就引起了学术界的广泛关注并提出了大量的方法来解决它. 蚁群算法是求解复杂组合优化问题的一种启发式仿生进化算法, 是求解旅行商问题的有效手段. 本文分别介绍蚁群算法中几个有代表性的算法, 综述了蚁群算法的改进、融合和应用的文献研究进展, 以评价近年来不同版本的蚁群算法为解决旅行商问题的发展和研究成果, 并针对改进蚁群算法结构框架、算法参数的设置及优化、信息素优化和混合算法等方面, 对现被提出的改进算法进行了分类综述. 对蚁群算法在未来对旅行商问题及其他不同领域的研究内容和研究热点的进一步发展提供了展望和依据.
Abstract:As one of the most challenging problems in combinatorial optimization, the traveling salesman problem has attracted extensive attention from the academic community since its birth, and a large number of methods have been proposed to solve it. The ant colony optimization (ACO) is a heuristic bionic evolutionary algorithm for solving complex combinatorial optimization problems, which is effective in solving the traveling salesman problem. This study introduces several representative ACOs and makes a literature review of the improvement, fusion, and application progress of ACOs to evaluate the development and research achievements of different versions of ACOs in solving the traveling salesman problem in recent years. Moreover, the improved ACOs are summarized in categories in terms of the framework structure, setting and optimization of algorithm parameters, pheromone optimization, and hybrid algorithms. The research provides an outlook and basis for the ACO application to solve the traveling salesman problem and further develop the research content and focuses of other fields.
文章编号:     中图分类号:    文献标志码:
基金项目:河北省物联网监控技术创新中心(21567693H); 青海省物联网重点实验室(2017-ZJ-Y21); 中央高校基本科研业务费(3142021009)
引用文本:
郭城成,田立勤,武文星.蚁群算法在求解旅行商问题中的应用综述.计算机系统应用,2023,32(3):1-14
GUO Cheng-Cheng,TIAN Li-Qin,WU Wen-Xing.Survey on Ant Colony Optimization for Solving Traveling Salesman Problem.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):1-14