###
计算机系统应用英文版:2023,32(3):238-244
本文二维码信息
码上扫一扫!
基于双判定因子的道路绿化带分割
(1.陕西高速机械化工程有限公司, 西安 710038;2.长安大学 信息工程学院, 西安 710064)
Road Green Belt Segmentation Based on Double Decision Factors
(1.Shaanxi Expressway Mechanisation Engineering Co. Ltd., Xi’an 710038, China;2.School of Information Engineering, Chang’an University, Xi’an 710064, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 532次   下载 1253
Received:July 30, 2022    Revised:August 26, 2022
中文摘要: 以高速公路的无人机影像点云数据为研究对象, 提出一种基于双判定因子的道路绿化带分割算法. 首先对点云数据进行串行下采样, 在降低点云数目的同时尽可能多地保留点云特征点; 其次, 对降采样后的点云数据进行正射影校正; 最后, 提出一种结合法向量夹角与 RANSAC 平面分割双判定的点云分割算法, 实现了对高速公路中绿化带的准确分割, 采用绿化带边界提取算法最终实现高速公路环境信息的分割. 以G85高速凤翔段的无人机影像点云作为实验数据, 分别采用本文算法、基于法向量夹角的分割算法、基于RANSAC平面拟合分割算法进行验证. 实验结果表明基于双判定因子的道路绿化带分割算法对环境噪点及离群点有较好的抗干扰性, 可以有效过滤路面高曲率点, 提取结果较好.
Abstract:Taking the point cloud data from unmanned aerial vehicle (UAV) images of expressways as the research object, this study proposes a road green belt segmentation algorithm based on double decision factors. For this purpose, the point cloud data is serially down-sampled to retain as many point cloud feature points as possible in addition to reducing the number of point clouds; then, orthorectification of the down-sampled point cloud data is performed; finally, a point cloud segmentation algorithm featuring double decision with the normal vector angle and random sample consensus (RANSAC) plane segmentation is proposed, and accurate segmentation of the green belts in expressways is thereby achieved. The information on the environment of expressways is ultimately segmented with the green belt boundary extraction algorithm. Taking the point cloud from the UAV images of the Fengxiang section of G85 Expressway as the experimental data, this study verifies the proposed algorithm, the segmentation algorithm based on the normal vector angle, and the one based on RANSAC plane fitting. The experimental results show that the road green belt segmentation algorithm based on double decision factors can better resist the interference from environmental noise and outliers, effectively filter the high curvature points on the road surface, and ultimately obtain better extraction results.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省交通运输厅科研项目(20-24K, 20-25X)
引用文本:
成高立,张翼,马荣贵.基于双判定因子的道路绿化带分割.计算机系统应用,2023,32(3):238-244
CHENG Gao-Li,ZHANG Yi,MA Rong-Gui.Road Green Belt Segmentation Based on Double Decision Factors.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):238-244