###
计算机系统应用英文版:2023,32(2):371-378
本文二维码信息
码上扫一扫!
基于轻量级迁移学习的无人机航拍视频图像天气场景分类
(1.西安工程大学 计算机科学学院, 西安 710600;2.集成电路与微系统设计航空科技重点实验室, 西安 710068;3.郑州大学 网络空间安全学院, 郑州 450002)
Weather Scene Classification of UAV Aerial Video Images Based on Lightweight Transfer Learning
(1.School of Computer Science, Xi’an Polytechnic University, Xi’an 710600, China;2.Key Laboratory of Aviation Science and Technology on Integrated Circuit and Micro-system Design, Xi’an 710068, China;3.School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 727次   下载 1736
Received:July 06, 2022    Revised:August 09, 2022
中文摘要: 针对传统航拍视频图像CNN模型天气分类效果差、无法满足移动设备应用以及现有天气图像数据集匮乏且场景单一的问题, 构建了晴天、雨天、雪天、雾天4类面向多场景的无人机航拍天气图像数据集, 并提出了基于轻量级迁移学习的无人机航拍视频图像天气场景分类模型. 该模型采用迁移学习的方法, 在ImageNet数据集上训练好两种轻量级CNN, 并设计3个轻量级CNN分支进行特征提取. 特征提取首先采用ECANet注意力机制改进的EfficientNet-b0作为主分支提取整幅图像特征, 并使用两个MobileNetv2分支分别对天空和非天空局部独有的深层特征进行提取. 其次, 通过Concatenate将这3个区域进行特征融合. 最后, 使用Softmax层对4类天气场景实现分类. 实验结果表明, 该方法应用于移动等计算受限设备时对于天气场景分类的识别准确率达到了97.3%, 有着较好的分类效果.
中文关键词: 场景分类  迁移学习  MobileNet  EfficientNet  ECANet
Abstract:The traditional CNN models have a poor weather classification effect for aerial video images and cannot satisfy the applications to mobile devices, and the existing weather image datasets are lacking, with single scenes. To address these problems, this study constructs four types of UAV aerial weather image datasets of sunny days, rainy days, snowy days, and foggy days for multiple scenes and proposes a weather scene classification model for UAV aerial video images based on lightweight transfer learning. The model uses a transfer learning approach to train two lightweight CNNs on the ImageNet dataset and designs three lightweight CNN branches for feature extraction. In feature extraction, EfficientNet-b0, a modification of the ECANet attention mechanism, is first used as the main branch to extract whole-image features, and two MobileNetv2 branches are employed to extract deep features unique to the sky and non-sky localities separately. Next, feature fusion is carried out for the three regions by Concatenate. Finally, a Softmax layer is used to classify the four classes of weather scenes. The experimental results indicate that the method achieves the accuracy of 97.3% in classifying weather scenes when applied to mobile and other computationally constrained devices, with good classification results.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
黄安陈,张晓滨,田泽,李云云,王家丰.基于轻量级迁移学习的无人机航拍视频图像天气场景分类.计算机系统应用,2023,32(2):371-378
HUANG An-Chen,ZHANG Xiao-Bin,TIAN Ze,LI Yun-Yun,WANG Jia-Feng.Weather Scene Classification of UAV Aerial Video Images Based on Lightweight Transfer Learning.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):371-378