本文已被:浏览 1302次 下载 1532次
Received:July 11, 2022 Revised:August 09, 2022
Received:July 11, 2022 Revised:August 09, 2022
中文摘要: YOLO是目前计算机视觉目标检测领域比较重要的算法模型之一. 基于现有YOLOv5s模型提出了一种扩展的YOLOv5多级分类目标检测算法模型. 首先, 对LabelImg标注工具进行功能扩展, 使其满足多级分类标签文件构建; 其次在YOLOv5s算法基础上修改检测头输出格式, 在骨干网络前端引入DenseBlock、Res2Net网络模型核心设计思想, 获取丰富的多维度特征信息, 增强特征信息的重用性, 实现了YOLO多级分类目标检测任务. 在开源安全帽数据集上同时以安全帽颜色作为二级分类进行训练验证, 平均精度, 精确率和召回率分别达到了95.81%、94.90%和92.54%, 实验结果验证了YOLOv5多级分类目标检测任务的可行性, 并为目标检测及多级分类目标检测任务提供一种新的思路和方法.
Abstract:YOLO is one of the most important algorithm models in the target detection of computer vision. Given the existing YOLOv5s model, an extended YOLOv5 algorithm model for multi-level classification target detection is proposed. Firstly, the function of the annotation tool LabelImg is extended to construct multi-level classification label files. Secondly, the output format of the detection head is modified on this basis of the YOLOv5s algorithm, and the core design idea of the DenseBlock and Res2Net network model is introduced in the front end of the backbone network to extract rich mul-ti-dimensional feature information, enhance the reusability of feature information, and realize the task of YOLO-based multi-level classification target detection. The helmet color is taken as the secondary classification for training and verification on the open source helmet data set, and the average precision, precision, and recall reach 95.81%, 94.90%, and 92.54%, respectively. The experimental results verify the feasibility of the YOLOv5-based multi-level classification target detection task, and the proposed model provides a new idea and method for target detection and multi-level classification target detection tasks.
keywords: target detection YOLOv5 multi-level classification DenseBlock module loss function deep learning
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(2018YFB1003705)
引用文本:
金源,张长鲁.扩展YOLOv5安全帽多级目标分类检测.计算机系统应用,2023,32(2):139-149
JIN Yuan,ZHANG Chang-Lu.Extended YOLOv5 for Multi-level Target Classification Detection of Helmet.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):139-149
金源,张长鲁.扩展YOLOv5安全帽多级目标分类检测.计算机系统应用,2023,32(2):139-149
JIN Yuan,ZHANG Chang-Lu.Extended YOLOv5 for Multi-level Target Classification Detection of Helmet.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):139-149