###
计算机系统应用英文版:2023,32(6):212-220
本文二维码信息
码上扫一扫!
基于人工智能的高校学生表现预测模型
(广州软件学院 软件工程系, 广州 510990)
Artificial Intelligence-based Model for Predicting Student Performance in Higher Education
(Department of Software Engineering, Software Engineering Institute of Guangzhou, 510990, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 628次   下载 1646
Received:July 04, 2022    Revised:July 29, 2022
中文摘要: 教育是实现可持续发展目标的重要推动因素, 为了实现可持续发展目标, 人工智能(AI)是一项蓬勃发展的技术, 人们对理解学生行为和评估学生表现越来越感兴趣, 人工智能在改善教育方面有着巨大的潜力, 因为它已经开始在教育领域被开发出创新的教学方法, 以创造更好的学习. 介绍了一种基于人工智能的分析工具, 用于预测某所大学一年级信息技术课的学生表现, 建立了基于随机森林的分类模型, 预测第6周学生的学习成绩, 准确率为97.03%, 敏感性为95.26%, 特异性为98.8%, 精密度为98.86%, 马修斯相关系数为94%, 证明了这种方法在预测学生课程的早期表现, 非常有用. 在COVID-19疫情期间, 实验结果表明, 建议的预测模型满足预测虚拟教育系统中学生的学习行为要素所需的准确性、精确度和召回率.
Abstract:Education is an important enabler for achieving sustainable development goals (SDGs). Artificial intelligence (AI) is a booming technology, and people are showing increasing interests in understanding students’ behavior and evaluating their performance. For the SDGs, AI has great potential to improve education as it has started to be developed in the education field with innovative teaching methods to create better learning. This study presents an artificial intelligence-based analytic tool for predicting the performance of students in a first-year information technology course at a university. A random forest-based classification model is built to predict students’ performance in Week 6, and the model reports the accuracy of 97.03%, sensitivity of 95.26%, specificity of 98.8%, precision of 98.86%, and the Mathews correlation coefficient of 94%. The result demonstrates that this method is useful in predicting the early performance of students in courses. During the COVID-19 pandemic, experimental results showed that the proposed prediction model met the accuracy, precision, and recall required to predict elements of students’ learning behavior in a virtual education system.
文章编号:     中图分类号:TP391.48; TP311    文献标志码:
基金项目:2021年度广东省普通高校重点科研平台和科研项目(2021KTSCX160)
引用文本:
陈立军,潘正军,陈孝如.基于人工智能的高校学生表现预测模型.计算机系统应用,2023,32(6):212-220
CHEN Li-Jun,PAN Zheng-Jun,CHEN Xiao-Ru.Artificial Intelligence-based Model for Predicting Student Performance in Higher Education.COMPUTER SYSTEMS APPLICATIONS,2023,32(6):212-220