###
计算机系统应用英文版:2023,32(1):275-280
本文二维码信息
码上扫一扫!
融合Xception特征提取和坐标注意力机制的血细胞分割
(南京邮电大学 自动化学院、人工智能学院, 南京 210023)
Blood Cell Segmentation Fusing Xception Feature Extraction and Coordinate Attention Mechanism
(College of Automation & Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 744次   下载 1756
Received:May 03, 2022    Revised:July 06, 2022
中文摘要: 人体血细胞的检测与分割可以辅助医生快速对人体当前健康情况做出简单判断, 对诊断疾病具有重要意义. 为了解决传统图像分割算法在血细胞分割任务中出现错误分割目标、无法完全分割目标等问题, 提出了一种融合Xception特征提取和坐标注意力机制的血细胞分割算法XCA-Unet++. 该算法在Unet++网络结构的基础上, 在编码器部分引入Xception特征提取网络以更好地提取低层特征信息. 设计了一种以坐标注意力机制为基础的注意力细胞检测模块, 增强了网络对血细胞模糊边缘和不完整细胞的特征提取能力. 采用DiceLoss作为损失函数以优化数据集正负样本不均衡问题和提高网络的收敛能力. 在公开血细胞数据集上的实验对比表明, XCA-Unet++网络在IoUAccF1评估指标下分别取得94.44%、96.78%和97.12%的结果, 分割性能优于其他分割网络, 满足血细胞分割任务的精度要求.
Abstract:The detection and segmentation of human blood cells can assist doctors to quickly make simple judgments on the current health of the human body, which is of great significance for disease diagnosis. In segmentation tasks of blood cells, the traditional image segmentation algorithm may wrongly segment the target and is unable to completely segment the target. To address these problems, this study proposes a blood cell segmentation algorithm XCA-Unet++ fusing Xception feature extraction and the coordinate attention mechanism. On the basis of the Unet++ network structure, the algorithm introduces the Xception feature extraction network in the encoder part to better extract low-level feature information. Moreover, a cell detection module based on the coordinate attention mechanism is designed to enhance the network’s feature extraction ability for blood cells with blurred edges and incomplete cells. DiceLoss is used as the loss function to optimize the imbalance of positive and negative samples in the dataset and speed up network convergence. The experimental comparison on the public blood cell dataset indicates that the XCA-Unet++ network achieves the results of 94.44%, 96.78%, and 97.12% for the evaluation indicators IoU, Acc, and F1, respectively, and the segmentation performance is better than that of other segmentation networks. Thus, it meets the high-precision requirements of blood cell segmentation tasks.
文章编号:     中图分类号:    文献标志码:
基金项目:南京邮电大学自然基金(NY220057); 2021年度南京邮电大学创新训练计划省级重点项目(SZDG2021025)
引用文本:
颜玉松,尹芳洁,王彩玲.融合Xception特征提取和坐标注意力机制的血细胞分割.计算机系统应用,2023,32(1):275-280
YAN Yu-Song,YIN Fang-Jie,WANG Cai-Ling.Blood Cell Segmentation Fusing Xception Feature Extraction and Coordinate Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2023,32(1):275-280