###
计算机系统应用英文版:2022,31(12):178-186
本文二维码信息
码上扫一扫!
注意力与多视角融合的新闻推荐算法
(西安工业大学 计算机科学与工程学院, 西安 710021)
News Recommendation Algorithm Based on Fusion of Attention and Multi-perspective
(School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 735次   下载 1735
Received:April 13, 2022    Revised:May 22, 2022
中文摘要: 针对目前现有的新闻推荐系统未能充分考虑新闻的语义信息, 对新闻文本建模因子的单一性问题, 提出注意力与多视角融合的新闻推荐算法(Attention-BodyTitleEvent, Attention-BTE). 利用BERT模型以及注意力机制分别对新闻标题、正文、事件向量化, 将三者融合即新闻向量化表示, 再对候选新闻和用户浏览新闻数据进行处理, 分别得到对应的候选新闻向量化和用户向量化, 并将其进行点乘得到用户点击候选新闻的概率, 即新闻推荐结果. 实验数据表明, 与其他的新闻推荐算法相比, 该模型在F1指标上提高了约6%.
Abstract:The existing news recommendation system fails to sufficiently consider the semantic information of news, and modeling factors for news body suffers from unity problems. Attention-BodyTitleEvent (Attention-BTE), a news recommendation algorithm based on fusion of attention and multi-perspectives, is proposed in this study. The BERT model and attention mechanism are applied to vectorize the body, title, and event in the news respectively. The three parts are combined to represent news vectorization, and then the candidate news and user browsing news data are processed respectively to obtain the corresponding candidate news vectorization and user vectorization. Finally, dot multiplication is conducted to obtain the probability of users clicking on the candidate news, namely the news recommendation result. Experimental data demonstrate that Attention-BTE improves the index by about 6% compared with the other news recommendation algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:新型网络与检测控制国家地方联合工程实验室项目(GSYSJ2016013)
引用文本:
范琳娟,孙喁喁,徐飞,周行行.注意力与多视角融合的新闻推荐算法.计算机系统应用,2022,31(12):178-186
FAN Lin-Juan,SUN Yong-Yong,XU Fei,ZHOU Hang-Hang.News Recommendation Algorithm Based on Fusion of Attention and Multi-perspective.COMPUTER SYSTEMS APPLICATIONS,2022,31(12):178-186