###
计算机系统应用英文版:2022,31(12):51-58
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
少样本条件下基于自监督改进SimDet模型的消毒场景目标检测
(复旦大学 工程与应用技术研究院, 上海 200082)
Object Detection in Disinfection Scenes Based on Self-supervised Learning and SimDet Model under Condition of Few Samples
(Academy for Engineering & Technology, Fudan University, Shanghai 200082, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 692次   下载 1851
Received:April 17, 2022    Revised:May 22, 2022
中文摘要: 日常消毒工作已经成了常态化的工作, 智能消毒机器人是非常有效的一种方式. 机器人通常通过视觉来感知周围环境, 但是基于监督学习的检测算法通常需要大量的标注数据进行训练, 当标注数据量多时, 标注成本非常高, 当标注数据量少时, 模型容易陷入过拟合, 因此少样本目标检测是一种有效的解决途径. 本文以SimDet模型为基础, 提出了SimDet+模型. 第一, 针对消毒场景中的目标检测任务的特点, 增加了自监督预训练的过程, 第二, 因为存在查询图片可供参考, 对分类层进行了改进, 使用余弦相似度代替全连接层来计算置信度, 通过非参数化计算有效避免了过拟合现象. 针对消毒场景, 制作了一份22 min的视频数据集和包含8类物体的检测数据集, 分别用于两个阶段训练. 通过自监督预训练, 有效减少了数据标注成本, 同时下游任务的mAP从0.216 2提升到了0.530 2.
Abstract:Intelligent disinfection robots are a highly effective way of daily disinfection as it becomes regular. Robots usually perceive the surrounding environment through vision, but object detection based on supervised learning usually requires a large amount of labeled data for training. When the amount of labeled data is large, the cost of labeling is very high, and when the amount of labeled data is small, the model is prone to overfitting. Therefore, few-shot object detection is an effective solution. On the basis of the SimDet Model, this study proposes the SimDet+ model. First, according to the characteristics of the object detection task in a disinfection scene, the process of self-supervised pre-training is added. Second, as there are query images for reference, the classification layer is improved, where the cosine similarity instead of the fully connected layer is employed for confidence level calculation, and thus the overfitting phenomenon is effectively avoided through non-parametric calculation. For the disinfection scene, a 22-minute video dataset and a detection dataset containing eight categories of objects are produced and used in two stages separately for training. Through self-supervised pre-training, the cost of data labeling is effectively reduced, and the mAP of downstream tasks is increased from 0.216 2 to 0.530 2.
文章编号:     中图分类号:    文献标志码:
基金项目:复旦大学新型冠状病毒肺炎防治研究专项
引用文本:
蔡汝佳,江文萱,齐立哲,孙云权.少样本条件下基于自监督改进SimDet模型的消毒场景目标检测.计算机系统应用,2022,31(12):51-58
CAI Ru-Jia,JIANG Wen-Xuan,QI Li-Zhe,SUN Yun-Quan.Object Detection in Disinfection Scenes Based on Self-supervised Learning and SimDet Model under Condition of Few Samples.COMPUTER SYSTEMS APPLICATIONS,2022,31(12):51-58