本文已被:浏览 1431次 下载 2740次
Received:March 30, 2022 Revised:April 25, 2022
Received:March 30, 2022 Revised:April 25, 2022
中文摘要: 随着在云计算领域得到广泛的应用和关注, 集群容器编排管理平台Kubernetes已广泛应用于容器化应用服务的自动部署和发布、应用弹性扩展和回滚更新、故障检测和自我修复等服务场景. 第5代精简指令集计算机 (fifth-generation reduced instruction-set computer, RISC-V)具有精简化、模块化、可扩展和开源4大技术特点和优势, 已经得到学术界和工业界的广泛关注. 本文立足于Kubernetes生态和RISC-V生态的协同研究点, 为Kubernetes调度器提供异构指令集架构(instruction set architecture, ISA)的云服务任务调度支持. 本文通过对生产环境中RISC-V指令集架构的各类计算任务需求进行了量化分析, 发现现有的集群容器编排平台Kubernetes不具备调度RISC-V指令集架构的计算任务的能力, 尤其是其调度算法无法利用RISC-V用户自定义的可扩展指令集架构特性提供高性能的可靠服务. 为解决上述问题, 本文提出了一种创建时调度的ISAMatch模型, 综合考虑指令集亲和性、同种指令集架构节点数量和节点资源利用率等多个方面, 实现任务的最佳分配. 本文以现有的集群调度器为基础, 完善其针对多种指令集架构任务的调度需求, 相对比默认调度器正确率62% (调度RISC-V基础指令集任务)、41% (调度RISC-V扩展指令集任务)、67% (调度RISC-V扩展指令集任务且有“RISC-V”节点匹配标签), 在不考虑资源限制的条件下, ISAMatch模型可以达到100%的任务调度正确率.
中文关键词: Kubernetes调度器 RISC-V ISAMatch
Abstract:With the wide attention in the field of cloud computing, the cluster container orchestration management platform Kubernetes has been widely used in service scenarios such as automatic deployment and release of container application service, elastic expansion of application and rollback update, and fault detection and self-repairing. Fifth-generation reduced instruction-set computer (RISC-V) includes four technical characteristics and advantages: fine simplification, modularization, scalability, and open source, and it has attracted extensive attention from academia and industry. Based on the collaborative research of Kubernetes ecology and RISC-V ecology, this study supports scheduling tasks with heterogeneous instruction set architecture (ISA) for the Kubernetes scheduler. Through the quantitative analysis of various computing task requirements of RISC-V instruction set architecture in the production environment, it is found that the existing Kubernetes cannot schedule the computing tasks of RISC-V instruction set architecture, and in particular, it fails to employ the extended instruction set architecture characteristics defined by RISC-V developers to provide high-performance and reliable services. In order to solve these problems, this study proposes an ISAMatch model which comprehensively considers the affinity of the instruction set, the number of nodes in the same instruction set architecture, and the utilization of node resources, so as to realize the optimal allocation of tasks. Based on the existing cluster scheduler, this study improves its scheduling requirements for multiple instruction set architecture tasks. In addition, compared with the default scheduler whose accuracy rate is 62% (scheduling RISC-V basic instruction set tasks), 41% (scheduling RISC-V extended instruction set tasks), and 67% (scheduling RISC-V instruction set tasks with “RISC-V” node matching label), ISAMatch model can achieve a task scheduling accuracy of 100% without considering resource constraints.
keywords: Kubernetes scheduler RISC-V ISAMatch
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
蒋筱斌,熊轶翔,张珩,侯朋朋,武延军,赵琛.基于Kubernetes的RISC-V异构集群云任务调度系统.计算机系统应用,2022,31(9):3-14
JIANG Xiao-Bin,XIONG Yi-Xiang,ZHANG Heng,HOU Peng-Peng,WU Yan-Jun,ZHAO Chen.Cloud Task Scheduling System on RISC-V Heterogeneous Cluster Based on Kubernetes.COMPUTER SYSTEMS APPLICATIONS,2022,31(9):3-14
蒋筱斌,熊轶翔,张珩,侯朋朋,武延军,赵琛.基于Kubernetes的RISC-V异构集群云任务调度系统.计算机系统应用,2022,31(9):3-14
JIANG Xiao-Bin,XIONG Yi-Xiang,ZHANG Heng,HOU Peng-Peng,WU Yan-Jun,ZHAO Chen.Cloud Task Scheduling System on RISC-V Heterogeneous Cluster Based on Kubernetes.COMPUTER SYSTEMS APPLICATIONS,2022,31(9):3-14