本文已被:浏览 822次 下载 1863次
Received:March 15, 2022 Revised:April 12, 2022
Received:March 15, 2022 Revised:April 12, 2022
中文摘要: 车辆检测是智能交通系统重要的一个研究方向. 针对监控视角下的车辆检测问题, 提出了一种改进YOLOX算法的车辆检测方法. 使用网络深度更小的YOLOX_S模型, 对网络结构改进. 使用GHOST深度可分离卷积模块代替部分传统卷积, 在保证模型检测精度的同时减少模型参数; 将CBAM注意力模块融合到特征提取网络中, 并添加特征增强结构, 加强特征提取网络获得的特征图语义信息, 增强提取网络对目标的检测能力; 通过使用CIoU_loss优化损失函数, 提高模型边界框的定位精度. 测试实验结果表明, 改进后的网络识别准确率提升了2.01%, 达到95.45%, 证明了改进方法的可行性.
Abstract:Vehicle detection is an important research direction for intelligent transportation systems. In terms of vehicle detection from the monitoring perspective, a vehicle detection method based on an improved YOLOX algorithm is proposed. The YOLOX_S model with a smaller network depth is used to improve the network structure. The GHOST depthwise separable convolution module is adopted to replace some traditional convolutions, and model parameters are reduced with the model detection accuracy ensured. The CBAM attention module is integrated into a feature extraction network, and a feature enhancement structure is added to enhance the semantic information of feature maps obtained by the network and strengthen the ability of the network in detecting targets. By using the CIoU_loss to optimize the loss function, this study finds that the positioning accuracy of the bounding box of the model is improved. The test results show that the detection accuracy of the improved network is increased by 2.01%, reaching 95.45%, which proves the feasibility of the improved method.
文章编号: 中图分类号: 文献标志码:
基金项目:西安石油大学研究生创新与实践能力培养计划(YCS21213212)
Author Name | Affiliation | |
ZHAO Shuai-Hao | School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710065, China | zhaoshuaihao01@163.com |
Author Name | Affiliation | |
ZHAO Shuai-Hao | School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710065, China | zhaoshuaihao01@163.com |
引用文本:
赵帅豪.基于YOLOX的车辆检测.计算机系统应用,2022,31(12):195-202
ZHAO Shuai-Hao.Vehicle Detection Based on YOLOX.COMPUTER SYSTEMS APPLICATIONS,2022,31(12):195-202
赵帅豪.基于YOLOX的车辆检测.计算机系统应用,2022,31(12):195-202
ZHAO Shuai-Hao.Vehicle Detection Based on YOLOX.COMPUTER SYSTEMS APPLICATIONS,2022,31(12):195-202