###
计算机系统应用英文版:2022,31(10):254-260
本文二维码信息
码上扫一扫!
基于机器视觉的台架上钢坯位置分割
(1.南京工业大学 计算机科学与技术学院, 南京 211816;2.上海策立工程技术有限公司, 上海 201900)
Position Segmentation of Billet on Bench Based on Machine Vision
(1.School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China;2.Shanghai Celi Engineering Technology Co. Ltd., Shanghai 201900, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 659次   下载 1442
Received:January 14, 2022    Revised:March 21, 2022
中文摘要: 钢坯通过航车从库存调度到台架, 然后从台架经轨道到达炉前, 以往是人工控制机械将台架上的钢坯推到轨道上的. 这个过程的自动化实现需要知道钢坯在台架上的实时的位置分布, 以便于自动控制推钢机. 本文通过机器视觉方法实现台架上钢坯的实时定位, 提出了以U-Net为基础网络, 结合经典ResNet网络中的残差块, 实现了钢坯横向位置的精确分割. 实验结果和现场应用测试表明, 本文方法的分割精度能够达到工业现场的控制需求.
Abstract:A billet is dispatched from the inventory to the bench by a crane and then from the bench to the front of the furnace through a track. In the past, the billet was pushed onto the track by the manual control of machinery. The automation of this process requires knowledge of the real-time position distribution of billets on the bench for automatic control of the pusher. In this study, the real-time positioning of billets on the bench is achieved by the machine vision method. Specifically, with the U-Net as the basic network, the residual blocks in classic ResNet are used to achieve the accurate segmentation of transverse positions of billets. The experimental results and field application tests indicate that the segmentation accuracy of this method can meet the control requirements of industrial fields.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
张哲,邵允学,吕刚.基于机器视觉的台架上钢坯位置分割.计算机系统应用,2022,31(10):254-260
ZHANG Zhe,SHAO Yun-Xue,LYU Gang.Position Segmentation of Billet on Bench Based on Machine Vision.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):254-260