本文已被:浏览 646次 下载 1643次
Received:January 11, 2022 Revised:January 30, 2022
Received:January 11, 2022 Revised:January 30, 2022
中文摘要: 最近, 基于骨架的动作识别研究受到了广泛关注. 因为图卷积网络可以更好地建模非规则数据的内部依赖, ST-GCN (spatial temporal graph convolutional network)已经成为该领域的首选网络框架. 针对目前大多数基于ST-GCN的改进方法忽视了骨架序列所蕴含的几何特征. 本文利用骨架关节几何特征, 作为ST-GCN框架的特征补充, 其具有视觉不变性和无需添加额外参数学习即可获取的优势, 进一步地, 利用时空图卷积网络建模骨架关节几何特征和早期特征融合方法, 构成了融合几何特征的时空图卷积网络框架. 最后, 实验结果表明, 与ST-GCN、2s-AGCN和SGN等动作识别模型相比, 我们提出的框架在NTU-RGB+D数据集和 NTU-RGB+D 120数据集上都取得了更高准确率的效果.
Abstract:Recently, the research on skeleton-based action recognition has attracted a lot of attention. As the graph convolutional networks can better model the internal dependencies of non-regular data, the spatio-temporal graph convolutional network (ST-GCN) has become the preferred network framework in this field. However, most of the current improvement methods based on the ST-GCN framework ignore the geometric features contained in the skeleton sequences. In this study, we exploit the geometric features of the skeleton joint as the feature enhancement of the ST-GCN framework, which has the advantage of visual invariance without additional parameters. Further, we integrate the geometric feature of the skeleton joint with earlier features to develop ST-GCN with geometric features. Finally, the experimental results show that the proposed framework achieves higher accuracy on both NTU-RGB+D dataset and NTU-RGB+D 120 dataset than other action recognition models such as ST-GCN, 2s-AGCN, and SGN.
keywords: geometric features feature fusion skeleton spatio-temporal graph convolutional network (ST-GCN) action recognition deep learning
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation | |
ZOU Hao-Li | School of Computer Science, South China Normal University, Guangzhou 510631, China | haolizou@m.scnu.edu.cn |
Author Name | Affiliation | |
ZOU Hao-Li | School of Computer Science, South China Normal University, Guangzhou 510631, China | haolizou@m.scnu.edu.cn |
引用文本:
邹浩立.基于融合几何特征时空图卷积网络的动作识别.计算机系统应用,2022,31(10):261-269
ZOU Hao-Li.Spatio-temporal GCN with Geometric Features Fusion for Action Recognition.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):261-269
邹浩立.基于融合几何特征时空图卷积网络的动作识别.计算机系统应用,2022,31(10):261-269
ZOU Hao-Li.Spatio-temporal GCN with Geometric Features Fusion for Action Recognition.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):261-269