本文已被:浏览 767次 下载 1666次
Received:January 04, 2022 Revised:January 29, 2022
Received:January 04, 2022 Revised:January 29, 2022
中文摘要: 设计和利用良好的图像先验知识是解决图像补全问题的重要方式. 生成对抗网络(GAN)作为一种优秀的生成式模型, 其生成器可以从大型图像数据集中学习到丰富的图像语义信息, 将预训练GAN模型作为图像先验是一种好的选择. 为了利用预训练GAN模型更好地解决图像补全问题, 本文在使用多个隐变量的基础上, 在预训练生成器中间层同时对通道和特征图添加自适应权重, 并在训练过程中微调生成器参数. 最后通过图像重建和图像补全实验, 定性和定量分析相结合, 证实了本文提出的方法可以有效地挖掘预训练模型的先验知识, 进而高质量地完成图像补全任务.
Abstract:Designing and utilizing good image prior knowledge is an important way to enable image inpainting. A generative adversarial network (GAN) is an excellent generative model, and its generator can learn rich image semantic information from large datasets. Thus, it is a good choice to use a pre-trained GAN model as an image prior. Making use of multiple hidden variables, this study adds adaptive weights to the channels and feature maps at the same time in the middle layer of the pre-trained generator and fine-tunes generator parameters in the training process. In this way, the pre-trained GAN model can be used for better image inpainting. Finally, through the contrast experiment of image reconstruction and image inpainting and the combination of qualitative and quantitative analysis, the proposed method is proved effective to mine the prior knowledge of the pre-trained model, thus finishing the task of image inpainting with high quality.
keywords: image prior generative adversarial network pre-trained model image inpainting deep learning
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
卢世杰,郝文宁,余晓晗,于坤.基于GAN先验的图像补全方法.计算机系统应用,2022,31(10):397-403
LU Shi-Jie,HAO Wen-Ning,YU Xiao-Han,YU Kun.Image Inpainting Method Based on GAN Prior.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):397-403
卢世杰,郝文宁,余晓晗,于坤.基于GAN先验的图像补全方法.计算机系统应用,2022,31(10):397-403
LU Shi-Jie,HAO Wen-Ning,YU Xiao-Han,YU Kun.Image Inpainting Method Based on GAN Prior.COMPUTER SYSTEMS APPLICATIONS,2022,31(10):397-403