本文已被:浏览 545次 下载 1900次
Received:November 01, 2021 Revised:December 08, 2021
Received:November 01, 2021 Revised:December 08, 2021
中文摘要: 随着智能手机和智能系统的飞速发展, 使用自然语言对话的人机交互方式也成为了流行趋势. 但是如果该对话系统需要处理多功能任务类型, 那么将产生复杂的任务命令, 问题的维度也会增加. 尽管目前的NLP技术能提供一些解决方案, 但在动态范围内实现动态任务命令识别与处理的能力仍然有限, 解决复杂问题的效果还有待提高. 因此, 在本项工作中, 提供了一种结合NLP引擎和任务计划单元的方法, 根据自然语言的指令来设定任务计划, 以便对话系统能较准确地识别命令任务和相关参数, 并为任务生成相应的合理计划. 同时, 为解决自然语言对话中信息的歧义或遗漏, 还研究了一种对话策略, 在必要时能以最少的问答迭代收集对话信息.
Abstract:The rapid development of smartphones and smart operating systems boosts the prevalence of natural language conversations in human-machine interactions. In the case of multiple-function tasks, however, the conversation system will generate a complex task command, and a variety of problems will arise. The current NLP technology can provide some solutions, but its capability to dynamically recognize and process task commands is insufficient in solving complex problems. In this study, we propose a solution that combines the NLP engine and task scheduling unit. Specifically, natural language commands are used for task scheduling, and thus the conversation system can accurately recognize command tasks and related parameters and generate a rational schedule for the tasks. In addition, a conversation strategy is proposed to address ambiguity or information omission in the natural language conversation, by which conversation information can be collected with minimum question-answering iterations when necessary.
keywords: natural language processing (NLP) human-machine conversation command recognition task system speech recognition
文章编号: 中图分类号: 文献标志码:
基金项目:云南省教育厅科学研究基金(2021J0797)
引用文本:
王杉,丁磊,王晓旭.人机对话中自然语言任务命令的识别和计划.计算机系统应用,2022,31(8):395-401
WANG Shan,DING Lei,WANG Xiao-Xu.Recognition and Schedule for Natural Language-based Task Commands in Human-machine Conversation.COMPUTER SYSTEMS APPLICATIONS,2022,31(8):395-401
王杉,丁磊,王晓旭.人机对话中自然语言任务命令的识别和计划.计算机系统应用,2022,31(8):395-401
WANG Shan,DING Lei,WANG Xiao-Xu.Recognition and Schedule for Natural Language-based Task Commands in Human-machine Conversation.COMPUTER SYSTEMS APPLICATIONS,2022,31(8):395-401