###
计算机系统应用英文版:2022,31(7):46-54
本文二维码信息
码上扫一扫!
面向知识图谱的信息抽取技术综述
(湖南科技大学 计算机科学与工程学院, 湘潭 411100)
Review on Information Extraction Techniques for Knowledge Graph
(School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411100, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1610次   下载 4685
Received:October 18, 2021    Revised:November 17, 2021
中文摘要: 互联网时代, 数据呈爆发式的增长, 怎样从这些数据中抽取出有用的信息, 已是人工智能研究中的一个核心问题. 知识图谱作为解决这一问题的重要方法, 已成为人工智能技术发展的核心推动力. 信息抽取是知识图谱构建过程中的首要环节, 它实现了从海量的数据中抽取出结构化实体以及实体之间的关系. 本文探讨知识图谱中信息抽取的发展趋势, 对实体抽取、关系抽取和事件抽取及其关键技术进行了综述, 分析和讨论了当前存在的问题、挑战以及未来发展的方向.
Abstract:How to extract useful information from surging data has become a critical issue confronting artificial intelligence in the Internet age. As an important method, knowledge graph has become the main driving force to promote the development of artificial intelligence technology. Information extraction realizes the extraction of structured entities and their relationships from massive data, which is the primary step in constructing a knowledge graph. This study discusses the development trend of information extraction in knowledge graphs, as well as entity extraction, relationship extraction, event extraction, and key technologies. Finally, it analyzes and discusses the current problems, challenges, and future development.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金面上项目(41871320); 教育部人文社科规划项目(17YJAZH032); 湖南省教育厅创新平台开放基金(20K050)
引用文本:
姜磊,刘琦,赵肄江,袁鹏,李媛,邹子维.面向知识图谱的信息抽取技术综述.计算机系统应用,2022,31(7):46-54
JIANG Lei,LIU Qi,ZHAO Yi-Jiang,YUAN Peng,LI Yuan,ZOU Zi-Wei.Review on Information Extraction Techniques for Knowledge Graph.COMPUTER SYSTEMS APPLICATIONS,2022,31(7):46-54