###
计算机系统应用英文版:2022,31(7):85-92
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于服务的云平台应用程序监控分析系统
(湖北工业大学 信息技术中心, 武汉 430068)
Service-based Application Monitoring and Analysis System of Cloud Platform
(Information Technology Center, Hubei University of Technology, Wuhan 430068, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 929次   下载 13699
Received:September 19, 2021    Revised:October 19, 2021
中文摘要: 针对云平台中对应用程序的性能监控方法存在全流程收集分析异常能力不足的问题, 提出一种基于云平台服务组件的应用程序异常检测和瓶颈识别系统(AAD-PSC), 可对多层架构云平台上的应用程序提供可自定义指标值的监控分析能力. 系统首先在前端应用服务层收集云平台服务调用数据并与异常事件相关联; 然后为应用程序适配定制化的异常检测方法, 达到最优检测效果; 最后查明由非工作负载变化引起的性能异常, 并对其进行瓶颈识别. 实验结果表明, 监控系统可快速准确检测不同类别的异常事件并识别性能瓶颈, 能够满足云平台下对应用程序的性能监控需求.
Abstract:To address the problem that the methods of cloud platforms to monitor application performance have a poor ability to collect and analyze anomalies in the whole process, this study proposes an application anomaly detection and bottleneck identification system based on cloud platform service components (AAD-PSC) that can provide monitoring and analysis characterized by customizable indicator values of applications on a cloud platform with multi-tier architecture. For this purpose, this system collects service invocation data at the front-end application service layer and correlates them with anomaly events. Then, customized anomaly detection methods are determined for the applications to achieve the optimal detection results. Finally, performance anomalies caused by non-workload changes are identified, and bottleneck identification is conducted. Experimental results show that the proposed monitoring system is able to quickly and accurately detect different types of anomaly events and identify corresponding performance bottlenecks and meets the needs of a cloud platform in application performance monitoring.
文章编号:     中图分类号:    文献标志码:
基金项目:湖北省教育厅人文社科基金(15Q065)
引用文本:
罗理机,唐华,周昕,张涛.基于服务的云平台应用程序监控分析系统.计算机系统应用,2022,31(7):85-92
LUO Li-Ji,TANG Hua,ZHOU Xin,ZHANG Tao.Service-based Application Monitoring and Analysis System of Cloud Platform.COMPUTER SYSTEMS APPLICATIONS,2022,31(7):85-92