###
计算机系统应用英文版:2022,31(6):192-201
本文二维码信息
码上扫一扫!
基于变分对抗与强化学习的行人重识别
(1.中国矿业大学 计算机科学与技术学院, 徐州 221116;2.矿山数字化教育部工程研究中心, 徐州 221116)
Person Re-identification Based on Variational Adversarial and Reinforcement Learning
(1.School of Computer Science & Technology, China University of Mining and Technology, Xuzhou 221116, China;2.Engineering Research Center of Mine Digitization, Xuzhou 221116, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 747次   下载 1555
Received:September 11, 2021    Revised:October 14, 2021
中文摘要: 行人重识别技术在实际应用中易受行人姿态变化的干扰, 由于行人姿态的变化不仅丢失部分行人信息, 而且还会引起大于身份差异的外观变化, 导致现有工作难以学到鲁棒的行人特征. 为了解决上述问题, 本文提出一种基于变分对抗与强化学习的生成式对抗网络(RL-VGAN)用于多姿态行人重识别任务. 该方法的核心思想是在不受姿态变化干扰的情况下通过外观编码器和姿态编码器将行人属性分解为外观特征和姿态特征, 用以学习鲁棒的身份视觉特征. 首先, 设计的变分生成网络利用Kullback-Leibler散度损失促进外观编码器推断与身份信息相关的连续隐变量. 其次, 为了使生成式对抗网络逐步收敛到稳定状态, 采用强化学习策略平衡变分生成网络和判别网络的性能. 此外, 针对基于姿态引导图像生成任务, 提出一种新的Inception Score损失用于规范变分生成网络生成图像质量的过程. 实验结果证明, 所提出的RL-VGAN方法在多个基准数据集上优于其他方法.
Abstract:Person re-identification (ReID) technology is easily disturbed by the pose variation which causes loss of person information and appearance changes exceeding identity differences. It is a challenging task for existing ReID methods to learn robust person features. For such problems, we propose the generative adversarial network (GAN) based on variational inference and reinforcement learning (RL-VGAN). The core idea of the proposed method is to disentangle person attributes into appearance features and pose features via appearance and pose encoders, which learns robust identity-related features without interference from pose changes. Firstly, the designed variational generative network leverage the Kullback-Leibler divergence loss to strengthen the appearance encoder for inferring identity-related continuous latent variables. Secondly, we use reinforcement learning to balance the performance of the generative and discriminative networks during the training process. Thirdly, for the pose-guided generative task, a novel Inception Score loss is designed for evaluating the image synthesis quality in the variational generative network. Experimental results demonstrate the superiority of the proposed RL-VGAN over other methods for the benchmark datasets.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61806206, 62172417); 江苏省自然科学基金(BK20180639, BK20201346); 江苏省六大人才高峰计划(2015-DZXX-010, 2018-XYDXX-044)
引用文本:
陈莹,夏士雄,赵佳琦,周勇,姚睿,朱东郡.基于变分对抗与强化学习的行人重识别.计算机系统应用,2022,31(6):192-201
CHEN Ying,XIA Shi-Xiong,ZHAO Jia-Qi,ZHOU Yong,YAO Rui,ZHU Dong-Jun.Person Re-identification Based on Variational Adversarial and Reinforcement Learning.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):192-201