###
计算机系统应用英文版:2022,31(6):245-251
本文二维码信息
码上扫一扫!
基于改进YOLOv4的变电站缺陷检测
(1.南京理工大学 自动化学院, 南京 210094;2.浙江华云信息科技有限公司, 杭州 310030)
Defect Detection for Substation Based on Improved YOLOv4
(1.School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;2.Zhejiang Huayun Information Technology Co. Ltd., Hangzhou 310030, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 590次   下载 2120
Received:August 27, 2021    Revised:September 26, 2021
中文摘要: 为提高变电站设备缺陷的检测精度, 保障变电站运行安全, 提出一种基于改进YOLOv4的缺陷检测算法. 不同于原始YOLOv4, 该算法使用一维卷积替代全连接来优化CBAM卷积注意力模块, 然后将其嵌入主干网络中以增强特征提取能力; 同时, 在特征融合中应用空洞卷积扩大感受野, 聚合更广的语义信息. 该算法在现场拍摄的样本集上进行测试, mAP可达到86.97%, 相比原始YOLOv4提高了2.78%. 实验结果表明, 本文提出的YOLOv4改进算法能够提升网络性能, 更好地应用于变电站设备缺陷检测任务.
Abstract:To increase the defect detection accuracy on substation equipment and thus ensure the operation safety of the substation, this study proposes a defect detection algorithm based on an improved YOLOv4. Unlike the original YOLOv4, the new algorithm replaces the fully connected layers with one-dimensional convolution to optimize the convolutional block attention module (CBAM), which is then embedded into the backbone network to enhance the feature extraction ability. Meanwhile, dilated convolution is used in feature fusion layers for expanding the receptive field and aggregating broader semantic information. The algorithm is tested on images captured in real substation scenes and achieves a mean average precision (mAP) of 86.97%, an increase of 2.78% on that of the original YOLOv4. Experimental results show that the proposed algorithm can improve the network performance and is thus more suitable for defect detection on substation equipment.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈婷,周旻,韩勤,张湘,茅耀斌.基于改进YOLOv4的变电站缺陷检测.计算机系统应用,2022,31(6):245-251
CHEN Ting,ZHOU Min,HAN Qin,ZHANG Xiang,MAO Yao-Bin.Defect Detection for Substation Based on Improved YOLOv4.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):245-251