本文已被:浏览 567次 下载 1283次
Received:August 30, 2021 Revised:September 26, 2021
Received:August 30, 2021 Revised:September 26, 2021
中文摘要: 针对服装图像分类模型的参数量过大, 时间复杂度过高和服装分类准确度不高等问题. 提出了一种利用网络剪枝方法和网络稀疏约束, 减少卷积神经网络Xception中从卷积层到全连接层的冗余参数, 增加网络的稀疏性和随机性, 减轻过拟合现象, 在保证不影响精度的前提下尽可能降低模型的时间复杂度和计算复杂度. 此外在卷积层引入了注意力机制SE-Net模块, 提升了服装图像分类的准确率. 在DeepFashion数据集上的实验结果表明, 使用网络剪枝方法缩减的网络模型在空间复杂度上和时间复杂度上均有所降低, 服装图像分类准确率和运行效率与VGG-16, ResNet-50和Xception模型相比均有所提升, 使得模型对设备的要求更低, 深度卷积神经网络在移动端、嵌入式设备中使用成为可能, 在实际服装领域的电商平台的应用中有比较高的使用价值.
Abstract:The clothing image classification model has many parameters, high time complexity, and low accuracy of clothing classification. In response, a network pruning method and network sparsity constraints were proposed to reduce the redundant parameters from the convolutional layer to the full connection layer in the Xception of the convolutional neural network (CNN), increase the sparsity and randomness of the network, reduce the over-fitting phenomenon, and lower the time complexity and computational complexity of the model as much as possible without affecting the accuracy. In addition, the attention mechanism SE-Net module is introduced into the convolution layer to improve the accuracy of clothing image classification. The experimental results on the DeepFashion dataset show that the network model reduced by the network pruning method has brought down both the spatial complexity and the time complexity. Compared with VGG-16, ResNet-50, and Xception models, the proposed model, with higher clothing image classification accuracy and operation efficiency, lowers the requirements on equipment and paves the way for the application of the deep CNN on mobile terminals and embedded devices. It has a high value in the application of e-commerce platforms in real-world clothing.
keywords: clothing classification Xception model network pruning attention mechanism convolutional neural network (CNN) image classification
文章编号: 中图分类号: 文献标志码:
基金项目:陕西省科技成果转移与推广计划(2019CGXNG-018).
引用文本:
任永亮,宋田,毋涛.基于Xception改进的卷积神经网络服装分类算法.计算机系统应用,2022,31(6):381-387
REN Yong-Liang,SONG Tian,WU Tao.Improved Clothing Classification Algorithm Based on Xception in Convolutional Neural Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):381-387
任永亮,宋田,毋涛.基于Xception改进的卷积神经网络服装分类算法.计算机系统应用,2022,31(6):381-387
REN Yong-Liang,SONG Tian,WU Tao.Improved Clothing Classification Algorithm Based on Xception in Convolutional Neural Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):381-387