本文已被:浏览 613次 下载 1145次
Received:August 28, 2021 Revised:September 26, 2021
Received:August 28, 2021 Revised:September 26, 2021
中文摘要: 随着交通智能化的发展, 高速公路监控视频加密上云逐渐成为交通发展的主要趋势之一. 交通数据深度挖掘, 尤其是行人检测问题, 则是该趋势中亟待解决问题之一. 本文针对多种道路环境的行人检测问题, 提出了一种基于鲲鹏云的全天候行人监测解决方案. 首先, 将监控相机中的视频流通过流媒体服务转发至鲲鹏云; 然后鲲鹏云进行视频流解码与行人检测, 同时保存行人历史信息; 最后进行行人事件分析和上报. 本系统采用嵌入式神经网络处理器(NPU)代替传统图形处理器(GPU)平台加速YOLOv4行人检测模块的推理, 一方面取得了较快的检测速度并可实时处理22路视频流, 另一方面, 该解决方案针对不同道路场景下高速道路上的行人也可取得较好的监测效果.
Abstract:With the development of transportation intellectualization, forwarding encrypted highway surveillance videos to the cloud has become a major trend in transportation development. Deep transportation data mining, especially pedestrian detection, is one of the crucial problems to be solved in this trend. In this study, to address the problem of pedestrian detection in various road environments, we propose an all-weather pedestrian monitoring solution based on the Kunpeng Cloud. The video streams in the surveillance camera are forwarded to the Kunpeng Cloud through a streaming service. Then, the Kunpeng Cloud decodes the video streams, detects pedestrians, and saves pedestrian history information. Finally, it analyzes and reports the pedestrian events. This system uses an embedded neural-network processing unit (NPU) instead of a traditional graphics processing unit (GPU) platform to accelerate the reasoning of the YOLOv4 pedestrian detection module. The solution not only achieves a fast detection speed and can process 22 video streams in real time but also delivers better results in detecting pedestrians on highways in different road scenes.
keywords: pedestrian detection neural-network
processing?unit (NPU) deep learning YOLOv4 multiple object detection
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金面上项目(62072053); 国家自然科学基金青年项目(62006026)
引用文本:
靳静玺,孙士杰,宋焕生.基于鲲鹏云的复杂道路场景行人监测系统.计算机系统应用,2022,31(6):109-116
JIN Jing-Xi,SUN Shi-Jie,SONG Huan-Sheng.Pedestrian Monitoring System in Complex Road Scene Based on Kunpeng Cloud.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):109-116
靳静玺,孙士杰,宋焕生.基于鲲鹏云的复杂道路场景行人监测系统.计算机系统应用,2022,31(6):109-116
JIN Jing-Xi,SUN Shi-Jie,SONG Huan-Sheng.Pedestrian Monitoring System in Complex Road Scene Based on Kunpeng Cloud.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):109-116