###
计算机系统应用英文版:2022,31(5):338-344
本文二维码信息
码上扫一扫!
道路传感器监测数据异常辨识方法
(1.长安大学 信息工程学院, 西安 710064;2.交通运输部公路科学研究所, 北京 100088)
Anomaly Identification Method for Pavement Sensor Monitoring Data
(1.School of information Engineering, Chang’an University, Xi’an 710064, China;2.Research Institute of Highway Ministry of Transport, Beijing 100088, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 494次   下载 1206
Received:August 02, 2021    Revised:August 31, 2021
中文摘要: 足尺加速加载试验场具有复杂的路面结构, 其中埋设了多种传感器用于监测路面性能的各项指标. 由于传感器采集的数据具有高频海量的特点, 使用传统方法进行异常数据的辨识效率低且精度差. 针对该问题, 本文通过特定软件将原始高频采集数据进行可视化, 再将得到的可视化后数据进行类别标注, 以此作为原始数据集; 接下来针对可视化后的数据形状特征突出的特点, 本文选择了一种轻量级的卷积神经网络模型GhostNet对传感器监测数据进行异常自动辨识; 通过设计各项参数并对该网络模型进行训练, 最终在验证集上测试的结果发现: 异常数据的辨识率高达99%. 通过与常规分类模型ResNet50 (残差神经网络)对比, GhostNet网络模型的异常辨识准确率提升了11%, 能够在海量道路传感器监测数据中快速辨识异常数据, 为道路传感器故障监测提供有力的数据支持.
Abstract:The full-scale accelerated loading test field has a complex pavement structure, in which a variety of sensors are embedded to monitor indicators of pavement performance. For the high-frequency and massive data collected by the sensors, the identification of abnormal data using traditional methods has low efficiency and poor accuracy. Considering this, this study visualizes the originally collected high-frequency data through specific software and then labels the visualized data as the original dataset. Next, according to the characteristics of obvious shape features of the data after visualization, the lightweight convolutional neural network model GhostNet is selected to automatically identify the abnormal data from the monitored dataset by sensors. Through the parameter design and the network model training, the test results on the verification set show that the identification rate of abnormal data is as high as 99%. Compared with the conventional classification model residual neural network (Resnet50), the GhostNet model has improved the anomaly identification accuracy by 11%. It can quickly identify abnormal data in massive monitored data by pavement sensors, which can provide strong data support for pavement sensor fault monitoring.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2018YFB1600202); 长安大学博士研究生创新能力培养资助项目(300203211241)
引用文本:
李荣磊,裴莉莉,关伟,袁博,李伟.道路传感器监测数据异常辨识方法.计算机系统应用,2022,31(5):338-344
LI Rong-Lei,PEI Li-Li,GUAN Wei,YUAN Bo,LI Wei.Anomaly Identification Method for Pavement Sensor Monitoring Data.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):338-344