本文已被:浏览 760次 下载 1603次
Received:July 22, 2021 Revised:August 18, 2021
Received:July 22, 2021 Revised:August 18, 2021
中文摘要: 车辆的异常行为可能引发交通事故, 甚至造成经济损失和人员伤亡. 准确识别车辆异常行为可以预防潜在的危险. 针对现有研究存在的数据难以保留时间特征等问题, 本文提出一种带有注意力层的长短记忆神经网络的识别模型, 利用真实交通场景车辆异常轨迹对所提出的模型进行训练和验证. 实验结果表明, 所提出的模型能够有效的识别车辆异常驾驶行为, 准确率可达到98.4%.
Abstract:Abnormal behaviors of vehicles may cause traffic accidents or even economic losses and casualties. Accurate recognition of abnormal vehicle behaviors can prevent potential hazards. To tackle the problems in existing studies, such as difficulty to retain the time characteristics of data, this study proposes a recognition model of long short-term memory (LSTM) neural network with an attention layer, and trains and verifies the proposed model by using abnormal vehicle trajectories in real traffic scenes. The experimental results show that the proposed model can effectively recognize abnormal driving behaviors with accuracy reaching 98.4%.
keywords: abnormal driving behavior attention layer long short-term memory (LSTM) attention mechanism
文章编号: 中图分类号: 文献标志码:
基金项目:河北省省级科技计划(2020ZDLGY16-06); 国家重点研发计划课题子课题(2018YFB1600604)
引用文本:
杜绎如,马印怀,吴建波,惠飞,阮仕峰,郭星.基于LSTM-att的车辆异常驾驶行为识别.计算机系统应用,2022,31(5):165-173
DU Yi-Ru,MA Yin-Huai,WU Jian-Bo,HUI Fei,RUAN Shi-Feng,GUO Xing.Recognition of Vehicle Abnormal Driving Behaviors Based on LSTM-att.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):165-173
杜绎如,马印怀,吴建波,惠飞,阮仕峰,郭星.基于LSTM-att的车辆异常驾驶行为识别.计算机系统应用,2022,31(5):165-173
DU Yi-Ru,MA Yin-Huai,WU Jian-Bo,HUI Fei,RUAN Shi-Feng,GUO Xing.Recognition of Vehicle Abnormal Driving Behaviors Based on LSTM-att.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):165-173