###
计算机系统应用英文版:2022,31(5):291-297
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于DCT变换和零次学习的刑侦图像超分辨率
(1.西安邮电大学 通信与信息工程学院, 西安 710121;2.电子信息现场勘验应用技术公安部重点实验室, 西安 710121)
Criminal Investigation Image Super-resolution Based on DCT and Zero-shot Learning
(1.School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;2.Key Laboratory of Electronic Information Application Technology for Scene Investigation Ministry of Public Security, Xi’an 710121, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 620次   下载 1572
Received:July 31, 2021    Revised:August 20, 2021
中文摘要: 图像超分辨率在视频侦查领域有重要作用. 基于卷积神经网络的超分辨率算法通常在训练时输入人工合成的低分辨率图像, 学习高、低分辨率图像的映射, 很难应用于视频侦查领域. 真实低分辨率图像退化过程复杂未知, 且大都经过压缩算法的处理, 存在人工压缩痕迹, 导致超分辨率图像出现假纹理. 针对真实场景下的低分辨率图像提出一种基于离散余弦变换(DCT)和零样本学习的超分辨率算法. 该算法利用图像内部的重复相似性特点, 采用输入图像自身的子图像进行训练. 不同于以往超分辨率网络的输入, 所提算法采用子图像的离散余弦变换系数作为超分辨率网络的输入, 避免网络对输入图像的压缩痕迹进行放大, 减少假纹理. 在标准数据集和真实刑侦图像上的实验结果表明所提算法能减少图像中由压缩痕迹导致的假纹理.
Abstract:Image super-resolution (SR) plays an important role in video-based criminal investigation. SR algorithms based on convolutional neural networks are usually trained with the input of artificially synthesized low-resolution images to learn the mapping between high-resolution and low-resolution images, and thus they are difficult to be applied in the field of video-based criminal investigation. The degradation process of real low-resolution images is complex and unknown, and most of them are processed by compression algorithms, leading to false textures in SR images. Therefore, a new SR algorithm based on discrete cosine transform (DCT) and zero-shot learning is proposed for the video-based criminal investigation images in real scenarios. The algorithm takes advantage of the repetitive similarity within the images and utilizes sub-images from the input image for training. Different from the input of the previous SR network, the proposed algorithm takes the DCT coefficients of the sub-images as the input of the SR network to avoid magnifying compression artifacts of the input image and reduce false textures. The experimental results on the standard datasets and real criminal investigation images show that the proposed algorithm can reduce the false texture caused by compression artifacts.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省社会科学基金(2021ZX15); 国家自然科学基金(61601362, 62071380, 41874173); 西安邮电大学研究生创新基金(CXJJLZ202001)
引用文本:
徐健,李新婷,牛丽娇.基于DCT变换和零次学习的刑侦图像超分辨率.计算机系统应用,2022,31(5):291-297
XU Jian,LI Xin-Ting,NIU Li-Jiao.Criminal Investigation Image Super-resolution Based on DCT and Zero-shot Learning.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):291-297