###
计算机系统应用英文版:2022,31(5):324-330
本文二维码信息
码上扫一扫!
基于多尺度注意力残差网络的图像超分辨率重建
(1.福建师范大学 光电与信息工程学院, 福州 350007;2.福建师范大学 医学光电科学与技术教育部重点实验室, 福州 350007;3.福建师范大学 福建省光子技术重点实验室, 福州 350007;4.福建师范大学 福建省光电传感应用工程技术研究中心, 福州 350007)
Image Super-resolution Reconstruction Based on Multi-scale Attention Residual Network
(1.College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China;2.Key Laboratory of Optoelectronic Science and Technology for Medicine (Ministry of Education), Fujian Normal University, Fuzhou 350007, China;3.Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China;4.Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 800次   下载 1501
Received:July 20, 2021    Revised:August 18, 2021
中文摘要: 数字图像在传递信息中起着重要的作用, 图像超分辨率技术能丰富图像的细节信息. 针对许多网络对低分辨率图像的有效特征复用不足和参数量过大的问题, 本文结合不同大小的卷积核以及注意力残差机制构建图像超分辨率网络, 用3个有差别尺度的卷积层来提取图像的特征, 其中第2和第3层用小卷积核替代大的卷积核, 对3层卷积融合之后引入注意力机制, 最后用传统的Bicubic插值直接给网络提供低频信息. 在减小参数量和减轻梯度消失的同时, 让有效的高频信息得到更大的权重且能增强网络之间的非线性表达能力, 这有利于网络训练的迭代收敛.实验结果表明, 基于多尺度注意力残差网络能够在一定程度上增强图像的重建能力.
Abstract:Digital images play an important role in information transmission, and image super-resolution technology can enrich image details. To address the problems of insufficient effective feature reuse of low-resolution images and excessive parameters in many networks, this study combines convolution kernels of different sizes and attention residual mechanism to construct the image super-resolution network. Three convolution layers of different scales are used to extract the image features, of which the second and third layers replace the large convolution kernels with small ones, and after the three-layer convolution fusion, the attention mechanism is introduced. Finally, the traditional Bicubic interpolation is used to directly provide low-frequency information for the network. By doing this, while reducing the number of parameters and mitigating the disappearance of gradients, the proposed network can make the effective high-frequency information gain greater weights and can enhance the nonlinear expression ability between the networks, which is conducive to the iterative convergence of network training. Experimental results show that the proposed network can enhance the image reconstruction ability to a certain extent.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省自然科学基金(2017J01744)
引用文本:
李俊珠,郑华,雷帅,陈清俊,潘浩.基于多尺度注意力残差网络的图像超分辨率重建.计算机系统应用,2022,31(5):324-330
LI Jun-Zhu,ZHENG Hua,LEI Shuai,CHEN Qing-Jun,PAN Hao.Image Super-resolution Reconstruction Based on Multi-scale Attention Residual Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):324-330