本文已被:浏览 6447次 下载 5496次
Received:July 14, 2021 Revised:August 18, 2021
Received:July 14, 2021 Revised:August 18, 2021
中文摘要: 深度学习方法的提出使得机器学习研究领域得到了巨大突破, 但是却需要大量的人工标注数据来辅助完成. 在实际问题中, 受限于人力成本, 许多应用需要对从未见过的实例类别进行推理判断. 为此, 零样本学习(zero-shot learning, ZSL)应运而生. 图作为一种表示事物之间联系的自然数据结构, 目前在零样本学习中受到了越来越多的关注. 本文对零样本图学习方法进行了系统综述. 首先概述了零样本学习和图学习的定义, 并总结了零样本学习现有的解决方案思想. 然后依据图的不同利用方式对目前零样本图学习的方法体系进行了分类. 接下来讨论了零样本图学习所涉及到的评估准则和数据集. 最后指明了零样本图学习进一步研究中需要解决的问题以及未来可能的发展方向.
Abstract:Although the deep learning method has made a huge breakthrough in machine learning, it requires a large amount of manual work for data annotation. Limited by labor costs, however, many applications are expected to reason and judge the instance labels that have never been encountered before. For this reason, zero-shot learning (ZSL) came into being. As a natural data structure that represents the connection between things, the graph is currently drawing more and more attention in ZSL. Therefore, this study reviews the methods of graph-based ZSL systematically. Firstly, the definitions of ZSL and graph learning are outlined, and the ideas of existing solutions for ZSL are summarized. Secondly, the current ZSL methods are classified according to different utilization ways of graphs. Thirdly, the evaluation criteria and datasets concerning graph-based ZSL are discussed. Finally, this study also specifies the problems to be solved in further research on graph-based ZSL and predicts the possible directions of its future development.
keywords: zero-shot learning (ZSL) graph learning cross-modal learning attribute word vector manifold alignment deep learning image recognition
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金面上项目(61673052); 中央高校基本科研业务费专项资金(FRF-TP-20-10B, FRF-GF-19-010A, FRF-IDRY-19-011)
引用文本:
支瑞聪,万菲,张德政.零样本图学习综述.计算机系统应用,2022,31(5):1-20
ZHI Rui-Cong,WAN Fei,ZHANG De-Zheng.Overview on Graph-based Zero-shot Learning.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):1-20
支瑞聪,万菲,张德政.零样本图学习综述.计算机系统应用,2022,31(5):1-20
ZHI Rui-Cong,WAN Fei,ZHANG De-Zheng.Overview on Graph-based Zero-shot Learning.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):1-20