###
计算机系统应用英文版:2022,31(5):377-381
本文二维码信息
码上扫一扫!
基于图信息的自监督多视角子空间聚类
(西安工程大学 计算机科学学院, 西安 710600)
Self-supervised Multi-view Subspace Clustering with Graph Information
(School of Computer Science, Xi’an Polytechnic University, Xi’an 710600, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 487次   下载 1592
Received:July 07, 2021    Revised:August 11, 2021
中文摘要: 多视角子空间聚类方法通常用于处理高维度、复杂结构的数据. 现有的大多数多视角子空间聚类方法通过挖掘潜在图信息进行数据分析与处理, 但缺乏对潜在子空间表示的监督过程. 针对这一问题, 本文提出一种新的多视角子空间聚类方法, 即基于图信息的自监督多视角子空间聚类(SMSC). 它将谱聚类与子空间表示相结合形成统一的深度学习框架. SMSC首先通过挖掘多视角数据的一阶图和二阶图构成潜在图信息, 其次利用聚类结果监督多个视角的公共潜在子空间学习过程. 通过在4个标准数据集上进行的广泛实验, 结果验证本文所提方法相较于传统的多视角子空间聚类方法更具有效性.
Abstract:Multi-view subspace clustering methods are usually used to process high-dimensional and complex data. Most of the existing multi-view subspace clustering methods analyze and process data by mining potential graph information, with no supervision process for the representation of the potential subspace. To solve this problem, this study proposes a new multi-view subspace clustering method, namely self-supervised multi-view subspace clustering (SMSC) based on graph information. It combines spectral clustering with subspace representation to formulate a unified deep learning framework. SMSC constructs potential graph information by mining the first-order and second-order graphs of multi-view data and then uses clustering results to supervise the learning process of the common potential subspace of multi-view data. Extensive experiments on four standard datasets show that the proposed method is more effective than traditional multi-view subspace clustering methods.
文章编号:     中图分类号:    文献标志码:
基金项目:西安市科技计划 (2020KJRC0027)
引用文本:
吴峰,刘改,刘诗仪.基于图信息的自监督多视角子空间聚类.计算机系统应用,2022,31(5):377-381
WU Feng,LIU Gai,LIU Shi-Yi.Self-supervised Multi-view Subspace Clustering with Graph Information.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):377-381