本文已被:浏览 561次 下载 1241次
Received:July 02, 2021 Revised:August 10, 2021
Received:July 02, 2021 Revised:August 10, 2021
中文摘要: 针对目前的行人属性识别方法存在行人属性数据不均衡、行人特征表达能力不足、鲁棒性差的问题, 本文提出局部特征重叠与行人属性识别相结合的方法. 网络使用全局和局部两个分支来提升网络整体特征表达能力, 在局部分支中将得到的特征图切分为几块大小相同的几个部分并使用Focal loss计算每个属性的损失解决行人属性不均衡问题. 最后将投票选出的各属性最优损失与全局特征计算出来的ID损失共同作为模型总损失. 在Market-1501_attribute和DukeMTMC-attribute两个行人属性数据集上进行测试, 实验结果表明所提方法能够有效提高行人重识别的准确性.
中文关键词: 行人重识别 全局特征 局部特征 属性信息 Focal loss
Abstract:Given the unbalanced pedestrian attribute data, insufficient expression ability of pedestrian features, and poor robustness of current pedestrian attribute recognition methods, this study proposes a method based on local feature overlap and pedestrian attribute recognition. The network uses global and local branches to improve the overall feature expression ability of the network. In the local branch, the feature graph obtained is divided into several parts with the same size, and the loss of each attribute is calculated with the Focal loss function to solve the problem of pedestrian attribute imbalance. Finally, the optimal loss of each attribute selected by voting and the ID loss calculated through global features are taken as the total loss of the model. The proposed method is tested on Market-1501_attribute and DukeMTMC-attribute pedestrian attribute datasets, and the experimental results show that this method can effectively improve the accuracy of pedestrian re-recognition.
文章编号: 中图分类号: 文献标志码:
基金项目:黑龙江省自然科学基金(LH2020F003)
引用文本:
陈伟航,刘志刚,黄朝,谢东军.局部特征重叠的行人属性识别方法.计算机系统应用,2022,31(4):381-385
CHEN Wei-Hang,LIU Zhi-Gang,HUANG Zhao,XIE Dong-Jun.Pedestrian Attribute Recognition Method Based on Local Feature Overlap.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):381-385
陈伟航,刘志刚,黄朝,谢东军.局部特征重叠的行人属性识别方法.计算机系统应用,2022,31(4):381-385
CHEN Wei-Hang,LIU Zhi-Gang,HUANG Zhao,XIE Dong-Jun.Pedestrian Attribute Recognition Method Based on Local Feature Overlap.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):381-385