###
计算机系统应用英文版:2022,31(4):229-237
本文二维码信息
码上扫一扫!
基于BERT的盗窃罪构成要件识别方法
(1.华北计算技术研究所, 北京 100083;2.中国司法大数据研究院, 北京 100043)
Constitutive Elements Identification Method of Theft Crime Based on BERT
(1.North China Institute of Computing Technology, Beijing 100083, China;2.China Justice Big Data Institute, Beijing 100043, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 642次   下载 1277
Received:July 05, 2021    Revised:July 30, 2021
中文摘要: 随着人工智能技术的发展, 人工智能技术在生活中被广泛使用, 并逐步深入到司法审理中. 但在实际应用中存在着可解释性不足, 不能有效的辅助审理这一问题. 针对这一问题, 本文结合刑事案件审理过程中依据犯罪构成采用的四要件理论, 从犯罪构成的四要件角度, 设计了构成要件识别任务. 筛选了盗窃罪中一些构成要件, 构建盗窃罪构成要件数据集. 并基于预训练语言模型BERT (bidirectional encoder representations from transformers), 设计了构成要件识别模型, 对该模型在本文构建的数据集上进行测试, 模型识别准确率达到93.54%. 在构成要件基础上构建量刑辅助算法能提高现有算法的解释性, 更有效的辅助法官审理案件.
Abstract:With the development of artificial intelligence technology, it has been widely used in life and gradually penetrated judicial proceedings. However, there is insufficient interpretability in practical applications and thus it cannot effectively assist trials. In light of the four-element theory used in criminal case trials according to the constitution of a crime, this paper addresses the above problem by designing an identification task of the four elements constituting a crime. Some constituent elements of crimes of theft are screened, and a data set of the constituent elements is constructed. Moreover, a constitutive elements identification model is developed on the basis of the pre-trained language model BERT and then tested on the data set constructed in this paper, with the identification accuracy reaching 93.54%. Constructing an auxiliary sentencing algorithm based on the constituent elements can improve the interpretability of the existing algorithm and more effectively assist judges in hearing cases.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2018YFC0832306, 2018YFC0831203, 2018YFC0831206)
引用文本:
费志伟,艾中良,张可,曹禹.基于BERT的盗窃罪构成要件识别方法.计算机系统应用,2022,31(4):229-237
FEI Zhi-Wei,AI Zhong-Liang,ZHANG Ke,CAO Yu.Constitutive Elements Identification Method of Theft Crime Based on BERT.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):229-237