###
计算机系统应用英文版:2022,31(3):234-240
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于视觉的停车场车位检测与分类算法
(上海交通大学 机械与动力工程学院, 上海 200240)
Vision-based Parking Space Detection and Classification Algorithm
(School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 716次   下载 2499
Received:June 01, 2021    Revised:July 05, 2021
中文摘要: 本文为提高停车场的使用效率提出一种基于视觉的车位检测与分类算法. 针对现有停车场车位分类方法自动化程度低, 设备与部署成本高昂, 以及现有的检测算法召回率低、准确性差的问题. 首先, 对车位进行检测, 建立车位表并增量式地扩充车位分类模型数据集; 其次, 利用测试数据集训练支持向量机车位分类模型; 最后, 根据监控视频流数据实时地对每个车位能否泊车进行判断. 实验结果表明: 在不同的光照条件下, 车位直线检测的召回率在94%以上, 车位分类模型的准确率在95%以上. 该算法自动化程度高, 准确率良好, 部署简便, 具有良好的应用价值.
Abstract:The existing parking lot classification methods are exposed to problems of low-level automation and high equipment and deployment costs, and the existing detection algorithms have low recall rates and poor detection accuracy. To solve these problems, this study proposes a vision-based parking space detection and classification algorithm to improve the utilization efficiency of parking lots. First, parking spaces are detected to help build a parking space table andincrementally expand the parking space classification model dataset. Then, the test dataset is used to train the support vector machine (SVM) model for parking space classification. Finally, real-time judgment of the parking space conditions is made one very parking space based on the surveillance video data. The experimental results show that under different lighting conditions, the recall rate of the line detection of parking spaces is above 94%, and the accuracy of the parking space classification model is above 95%. The algorithm boasts a high degree of automation, good accuracy, simple deployment, and high application value.
文章编号:     中图分类号:    文献标志码:
基金项目:政府间国际科技创新合作重点专项(2019YFE0100200)
引用文本:
黄伟杰,张希,赵柏暄,朱旺旺.基于视觉的停车场车位检测与分类算法.计算机系统应用,2022,31(3):234-240
HUANG Wei-Jie,ZHANG Xi,ZHAO Bai-Xuan,ZHU Wang-Wang.Vision-based Parking Space Detection and Classification Algorithm.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):234-240