###
计算机系统应用英文版:2022,31(3):326-332
本文二维码信息
码上扫一扫!
基于Attention机制的BiLSTM诈骗电话识别
(1.山东建筑大学 信息与电气工程学院, 济南 250101;2.山东省智能建筑技术重点实验室, 济南 250101)
BiLSTM Network Fraud Phone Recognition Based on Attention Mechanism
(1.School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China;2.Shandong Key Laboratory of Intelligent Buildings Technology, Jinan 250101, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1021次   下载 2540
Received:May 28, 2021    Revised:July 01, 2021
中文摘要: 电话诈骗日益猖獗, 严重影响人民的生命和财产安全, 如何有效防范电话诈骗已成为社会的一大焦点问题. 本文提出一种基于Attention-BiLSTM模型的诈骗电话识别方法. 该方法以电话文本为数据集, 采用双向长短时记忆神经网络(bi-directional long short-term memory)模型提取句子的长距离特征. 通过引入注意力机制增强电话文本中与诈骗相关词汇的特征权重, 得到电话文本的句子层面的特征向量表示, 最后输入Softmax层进行分类预测. 实验结果表明, 基于注意力机制的BiLSTM诈骗电话分类模型的准确率较基线模型分别提高了2.15%和0.6%, 具有更好的预测性能.
Abstract:Telephone fraud is increasingly rampant, affecting the safety of people’s lives and property seriously. How to effectively prevent telephone fraud has become a great concern of society. This paper proposes a fraud phone recognition method based on the Attention-BiLSTM model. This method uses phone text as a data set and adopts a bi-directional long short-term memory (BiLSTM) model to extract the long-distance characteristics of a sentence. Furthermore, the attention mechanism is utilized to enhance the meaning feature weight of the words related to the fraud parts in phone text. The feature vector representation of phone text at the sentence level is achieved and inputted to the Softmax layer for classification prediction. The experimental results show that the BiLSTM fraud phone classification model based on the attention mechanism has the accuracy increased by 2.15% and 0.6% respectively compared with baseline models, possessing more excellent prediction performance.
文章编号:     中图分类号:    文献标志码:
基金项目:山东省重大科技创新工程(2019JZZY010120); 山东省重点研发计划(2019GSF111054)
引用文本:
许鸿奎,姜彤彤,李鑫,周俊杰,张子枫,卢江坤.基于Attention机制的BiLSTM诈骗电话识别.计算机系统应用,2022,31(3):326-332
XU Hong-Kui,JIANG Tong-Tong,LI Xin,ZHOU Jun-Jie,ZHANG Zi-Feng,LU Jiang-Kun.BiLSTM Network Fraud Phone Recognition Based on Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):326-332